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Science has made considerable inroads in quantitatively characterizing, understanding 

and controlling non-living systems.  We are rather familiar with systems of physics and 

chemistry, ranging from elementary particles, atoms, molecules, to proteins, polymers, 

fluids, solids, etc. These are systems of interacting particles with well defined physical 

interactions, and their properties are described by the known laws of physics and 

chemistry. Most importantly, their behavior (at least statistically) is reproducible given 

the same initial conditions.  There are, however, other types of ubiquitous systems, 

surrounding us, namely those that involve living entities over which we hardly have any 

quantitative understanding, neither on the individual nor on the collective level.   In the 

following we will refer to collectives of living entities as “agent-based” or “agent” 

systems, in order to distinguish them from classical particle systems of inanimate objects. 

Although there have been intense efforts to study these systems, a generally accepted 

unifying framework is largely missing. Nevertheless, understanding, and ultimately 

controlling the behavior of such systems is a subject of extreme importance with 

applications ranging from biology, through social, to political sciences, and economics. 

                                                
1 This paper is based on (Eubank et.al. 2004).  
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Ultimately, such an understanding can be used to design agent systems like of robots or 

rovers, which collectively can perform tasks that would normally be prohibitive for 

humans. Examples include deep-water rescue missions, mine field mapping, distributed 

sensor networks (including military uses), and rovers for extraterrestrial explorations. In 

spite that there is no unifying understanding behind these systems, some control over the 

behavior of these systems can be achieved via agent-based modeling tools. The idea 

behind agent-based modeling is rather simple: build a computer model of the agent-

system under observation using a bottom-up approach by trying to mimic as much detail 

as possible. Building an agent model, however, is a rather expensive task: it involves the 

phases of 1) data collection, 2) model building, 3) exploiting the model, collecting 

statistics, and ultimately 4) validation which normally means comparing the output of the 

model with additional observations on the real system. The agent-models I will briefly 

mention in this paper took about 9 years to develop at Los Alamos National Laboratory. 

However, once developed, the framework can be used to simulate many similar 

circumstances and used as a tool with predictive capability.  

Some properties of Agent-systems 
 
There are at least two major differences from classical particle systems that make agent-

based systems hard to describe and understand, within a unified approach.  First, the 

“particle” or agent is a more complex entity than what can be represented by a simple 

function such as a Hamiltonian function of a classical system (e.g., a spin system). 

Secondly, the interaction topology, namely the prescription of which particle interacts 

with which others, is in general a complex and dynamic graph (network), unlike the 

regular lattices of crystalline solids or the continuous spaces of fluid dynamics. In many 



 3 

cases the notion of “locality” becomes elusive in these networks, such as in social 

networks, where physical or spatial locality of the agents can have little indication about 

the social “distances” and social interactions among the agents.   

In order to illustrate the more complex structure of the “particle” or agent, and its 

consequences, in the following we will use traffic, namely people (agents) driving on a 

highway, as an example, but the statements below are generally applicable.    

An agent is an entity with the following set of qualities: (1) There is a set of variables x 

describing the state of the agent. Position on the road, speed, health state, etc. The 

corresponding state space is X.  (2) There is a set of variables z, describing the perceived 

state of the environment, Z. The environment includes other agents if there are any. For 

example, level of congestion, state/quality of the road, weather conditions, etc. (3) There 

is a set of allowable actions (output space), A. Swerve, brake, accelerate, etc. (4) There is 

a set of strategies, which are functions s: (Z×X)t  → A, that summon an action to a given 

external perception, current state of the agent and history up to time t. These are “ways of 

reasoning” for the agent. One might think of it also as a behavioral input space. For 

example, depending on the age, background and other factors, some drivers will choose 

to brake and others to swerve to avoid an accident. Social studies and surveys will supply 

here valuable statistical inputs, since they can collect data of the type “agents with n years 

of driving experience who are between ages a1 and a2,  will swerve f% of the time and 

break g% of the time”, etc. (5) There is a set of utility variables, u∈U.  Time to 

destination,  number of accidents,  amount of speeding tickets, etc. (6) There is a 

multivariate objective function: F:U→Rm, which might include constraints (“rules”). E.g. 

the agent has to stay on the road. The analogous version in physics is called action. The 
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agent is trying is to optimize this objective function. For example, it is trying to minimize 

the time to destination, to keep at zero the number of accidents it is involved in, etc. 

Compared to the particles of classical systems, agents usually have memory of the past, 

which they can use to change/evolve their strategies, a process called learning.  The other 

important aspect is that agents can perform reasoning and planning, which basically 

entails a search by the agents of the choice tree and assigning likelihood weights and 

payoffs given what the other agents might choose. In realistic situations that involves 

hundreds of agents (such as markets, or traffic) long-term planning and reasoning is 

impossible to perform, due to the combinatorial explosion of the possibilities and also to 

the fact that not all information is available to any agent. In this case agents try to follow 

and exploit patterns in the response of the surrounding environment to their (past) 

actions, using these patterns to discriminate among their strategies, reinforcing some 

while diminishing others (reinforcement learning). This leads to bounded rationality like 

behavior, and introduces de-correlations between the strategies, and for that reason, it 

actually can be make statistical modeling a plausible feat.  In the following we will 

briefly describe two large-scale agent-based models developed at Los Alamos National 

Laboratory (LANL), a traffic simulator TRANSIMS and an epidemics simulator 

EPISIMS. 

TRANSIMS 
 
The Transportation Analysis and Simulation System (TRANSIMS) is an agent-based 

model of traffic in a particular urban area (the first model was for Portland, OR, USA).    

TRANSIMS conceptually decomposes the transportation planning task using three 

different time scales. A large time-scale associated with land use and demographic 
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distribution is employed to create activities for travelers (there several such activity 

categories such as work, shopping, entertainment, school, etc.).  Activity information 

typically consists of requests that travelers be at a certain location at a specified time, and 

includes information on travel modes available to the traveler.  

 

Figure 1.  Portland roadway network. 

 

This is achieved by creating a synthetic population and endowing it with demographics 

matching the joint distributions given in census data. The synthetic households are built 

by also using survey data from several thousands of households, which are observations 

made on the daily activity patterns of each individual in the household. These activity 

patterns are associated with synthetic households with similar demographics.  The 

locations for various activities are estimated taking into account observed land use 

patterns, travel times and dollar costs of transportation.  The intermediate time-scale 

consists of assigning routes and trip-chains to satisfy the activity requests. To do this, the 
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estimated locations are fed into a routing algorithm to find minimum cost paths through 

the transportation infrastructure consistent with constraints on mode choice (Barret et.al. 

2001, 2002) . An example constraint might be: “walk to a transit stop, take transit to work 

using no more than 2 transfers and no more than 1 bus”.   

 

Figure 2.  Locations and roads, downtown Portland. 

 

Finally, a very short time-scale is associated with the actual execution of trip plans in the 

road network.  This is done by a cellular automata simulation through a very detailed 

representation of the urban transportation network. The simulation is in effect a way to 

resolve the traffic induced when everyone tries to execute their plans simultaneously. The 

simulation resolves distances down to 7.5 meters and times down to 1 second. It provides 

an updated estimate of time-dependent travel times for each edge in the network, 

including the effects of congestion, which it feeds then to the router and location 

estimation algorithms, which produce new plans. This feedback process continues 
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iteratively until it converges to a “quasi - steady state” in which no one can find a better 

path in the context of everyone else's decisions. The resulting traffic patterns compare 

well to observed traffic. The entire process estimates the demand on a transportation 

network using census data, land usage data, and activity surveys.  More information and 

including availability of the software can be obtained from http://transims.tsasa.lanl.gov/ . 

 

Figure 3. The TRANSIMS microsimulation, downtown Portland. 

EPISIMS 
 
Although the TRANSIMS agent-based model is indeed useful for urban planners and 

traffic analysts, here we would like to focus on one of its applications, namely in the field 

of epidemics. Diseases such as colds, flu, smallpox or SARS, are transmitted through air 

between two agents, if they spend long enough time in the proximity of each other, or in 

a building with closed air ventilation. This means, that we can assume that the majority of 

http://transims.tsasa.lanl.gov/
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the infections will take place in locations, like offices, shopping malls, entertainment 

centers, mass transit units (metros, trams, etc.). Thus, by tracking the people in our 

TRANSIMS virtual city, we can generate a bipartite contact network, or graph, formed 

by two types of nodes, namely people nodes and locations nodes. If a person p enters a 

location l, then there is an edge drawn between that person and the corresponding 

location node on this graph. This edge has a time-stamp associated to it representing the 

union of distinct time intervals that person p was located at location l during the day. If 

two people nodes p1 and p2 have an incident edge onto the same location node l, the 

common intersection of the two time-stamps will tell us the total time the two people 

spent in the proximity of each other during the day, thus enabling us to determine the 

possibility of an airborne infection. In the case of Portland, there are about 1.6 million 

people nodes and 181,000 location nodes and over 6 million edges between them. These 

are huge graphs, representing considerable challenges for the measurement of its 

properties. This dynamic contact graph allows us to simulate different disease spread 

scenarios and test the sensitivities of the epidemics to disease parameters, such as 

incubation period, person-to-person infection rates, influence of age structure, activity 

patterns, etc. The epidemiological study tool thus generated is called EPISIMS, which 

was also developed at LANL, and can be used to aid decision making and planning for 

example for smallpox outbreaks. 

 In the following we will briefly summarize some the findings for the case of smallpox 

spread using the Portland data. For more details on EPISIMS, see (Eubank et.al. 2004). 

1) Vaccinating a person means taking it out from the contact graph together with its 

incident links. An efficient vaccination strategy will remove the smallest subset of nodes 
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such that the resulting graph is made of many small disconnected pieces, thus forbidding 

disease spread across the population. The smallpox vaccine is not entirely harmless, it 

can cause a disease called vaccinia in some people (it can be fatal in some cases), and 

thus one would like to minimize its impact on the population, making the Mass 

Vaccination strategy (vaccinate everyone) proposed by (Kaplan et.al. 2002) a last resort. 

Studying the projection of the bipartite graph onto people nodes, we have found that it is 

extremely interconnected with very high expansion properties, being able to shatter the 

graph only if we vaccinated everyone with 10 or more contacts during the day, which 

effectively meant a Mass Vaccination. Ultimately what we have found to work on such 

graphs was to perform vaccination of people that frequently took long-range trips across 

the city, corresponding to shortcuts in the network (Watts and Strogatz 1998) making it a 

more local graph with a larger diameter. This in case of an outbreak allows an effective 

use of the ring-strategy for quarantining and further vaccinations to stop disease spread.  

2) The most crucial parameter in containing epidemics spread is the delay in reaction 

time. Assume that sensors were developed that can perform an online analysis of the 

pathogens in the air. Then the question is, in what locations to place them such that they 

will most effectively (the earliest) capture the onset of the outbreak. Due to a particular, 

so-called scale-free property (Albert and Barabási 2002) of the locations projection of the 

bipartite network, one can pinpoint a small set of locations (the so-called dominating set, 

about 10% of all locations) which would cover a large fraction of people (about 90%) and 

thus it is the optimal set for detector placement, or for distribution purposes (of 

prophylactics and supplies).  Figure 4 shows the evolution of epidemics after a covert 

introduction in a particular location (at a university) when the disease is left to spread 
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(left side) compared to using a targeted contact tracing and quarantining strategy 

(right).

 

 

 

 

a) 

b) 
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Figure 4.  Comparison of a baseline case (on the left), with a targeted vaccination and 
quarantining strategy (right). The bars represent number infected at each location, and the 
color represents the fraction of infected people who are infectious. The inserts display the 
cumulative number of people infected and dead as a function of time, and for the targeted 
response, the number vaccinated and quarantined. Note the different scales between the 
leftmost and rightmost inserts. Reprinted from (Eubank et.al. 2004).

c) 

d) 
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