Low-Cost Nanostructured Solar Cells

Mike McGehee Stanford University

DOE workshop on solar energy in April 2005

• Over 200 scientists met in Maryland to assess the potential of utilizing solar energy to provide power for our country and to prioritize research directions.

• We wrote a report titled *Basic Research Needs for Solar Energy Utilization.*

Why solar cells are likely to provide a significant fraction of our power

• We probably need to generate ~ 30 TW of power without emitting carbon in 2050.

• The sun gives us 120,000 TW.

• Most other renewables probably can't provide 30 TW.

• Solar cells are safe and have few non-desirable environmental impacts.

• Using solar cells instead of burning coal to generate electricity is a much easier way to reduce carbon emissions than replacing gasoline in vehicles.

Conventional p-n junction photovoltaic (solar) cell

Jenny Nelson, The Physics of Solar Cells, 2003.

Silicon solar cells: The current industry leader

Modules

- 12 % efficiency
- \$350/m²
- $3/W_p$ (from manufacturer)
- $6/W_p$ (installed)

Average cost of PV cell electricity: \$.27/kW-hr

Today's grid electricity: \$0.06/kW-hr

Area and cost needed to power the country

(150 km)² of Nevada covered with 15 % efficient solar cells could provide the whole country with electricity

At \$350/m², we would have to spend \$8 trillion to do this.

Additional \$ would be needed for storage technology.

J.A. Turner, Science 285 1999, p. 687.

Multijunction cells

Grid	
n GaAs	_
AllnP	n
	n
	p
GainP (1.90 e\/)	P ²
AlColpP	p
AlGaliiP	р 0++
	<u>۲</u> ++
GalnP	n_
Cann	n
	 D
	F
GaAs (1.42 eV)	
GalnP	р
	p++
	n++
GaAs:N:Bi	n
	n
	р
GaAs:N:Bi (1.05 oV)	
GaAS.N.DI (1.05 EV)	
CoAciNiBi	n
GaAs:N:Bi	p n+±
GaAs:N:Bi	p p++
GaAs:N:Bi	p p++ n++
GaAs:N:Bi	p p++ n ⁺⁺ n
GaAs:N:Bi	p p++ n ⁺⁺ n
GaAs:N:Bi Ge Substrate (0.67 eV)	p p++ n++ n p
GaAs:N:Bi Ge Substrate (0.67 eV)	p p++ n ⁺⁺ n

SpectroLab has achieved 37 % efficiency

Costs are estimated at \$50,000/m², so concentrators must be used.

The cheapest option

Efficiency: 0.3 %

We don't have the land and water to provide the world with energy this way.

Can we artificially improve the efficiency?

Roll-to-Roll coating: A route to taking the costs below $50/m^2$ and keeping efficiency > 10 %.

P. Fairley, IEEE Spectrum. Jan. 2004 p.28

Single semiconductor organic PV cells

Flat bilayer organic PV cells

- Carriers are split at the interface.¹
- They selectively diffuse to the electrodes.²

- Exciton diffusion length ~ 4-20 nm
- Absorption length ~ 100-200 nm

¹ C.W. Tang, *APL* **48** (1986) p. 183.

² B.A. Gregg, J. Phys. Chem. B **107** (2003) p. 4688.

Nanostructured Cells

Excitons are split at interfaces.

Separating the electrons and holes enables the use of low quality materials

January 2005 Materials Research Society Bulletin

Bulk heterojunction PV cells made by casting blends

Heeger et al. Science 270 (1995) p. 1789.

Alivisatos et al., Science 295 (2002) p. 2425

Processes in bulk heterojunction PV cells

Bulk heterojunctions made by filling nanoporous films

Light absorber Electron acceptor

Polymer Ru Dye

sintered TiO₂ nanocrystals sintered TiO_2 nanocrystals

Efficiency

Carter 0.2 % Grätzel 4 %* *with solid state hole transporter

titania nanocrystals

Ordered bulk heterojunctions

- Almost all excitons can be split
- No deadends
- Polymer chains can be aligned

• Easy to model

• Semiconductors can be changed without changing the geometry.

G.D. Stucky et al. *Chem. Mater.* **14** (2002) p. 3284. C. Sanchez et al. *JACS* **125** (2003) p. 9770. Mesoporous titania films

- J Film thickness can be varied from 50 300 nm
- J Pore radius: 4 nm in the plane and 2-3 nm perpendicular to the plane
- J Film quality is very high
- L Pores are not straight

Melt infiltration

Adv.Func.Mat., 13 (2003) p. 301

Photovoltaic cells

Green: Solid (nonporous) titania

App. Phys. Lett. 83 (2003) 3380

Photocurrent is only generated at the top

App. Phys. Lett. 83 (2003) 3380

Diodes with the polymer in mesoporous silica

Fits to the SCLC current model yield very low mobilities.

How high does the hole mobility have to be?

If the films are 270-nm thick and $t_{back transfer} = 1 \ \mu s$, then

 μ needs to be approximately **10**⁻² **cm**²/Vs.

 μ_{SCLC} as high as 3 x 10^{-4} cm²/Vs

 μ_{FET} as high as 0.1 cm²/Vs

Hole-only P3HT diodes in anodic alumina

following P3HT infiltration and top electrode deposition

after AI anodization and pore widening to expose SnO₂:F

We have grown 20-120 nm diameter pores

Orientation of the chains

<u>514 nm:</u>	℃ (x 10 ⁵ cm ⁻¹)	C⁄ı_ (x 10⁵ cm⁻¹)	ratio
neat film	1.64	0.31	0.19
in Al ₂ O ₃	0.53	0.42	0.79

Hole mobility versus pore diameter

Conclusions

20 % efficiency can be achieve if

1.) We find a method for patterning 20 nm wide holes that are 200 nm deep in a suitable semiconductor.

- 2.) We reduce the bandgap to absorb more light.
- 3.) The energy loss associated with electron transfer is reduced.

4.) The charge carrier mobility is improved and the interface is engineered to almost eliminate recombination.

Review: Coakley and McGehee, Chemistry of Materials, 16 (2004) 4533-42.

Acknowledgements

PV Cells: Kevin Coakley, Yuxiang Liu, Chia Goh, Shawn Scully, Bhavani Srinivasan

Polymer synthesis: Katya Kadnikova, Jinsong Liu, Jean Fréchet (UC Berkeley) Carine Edder (Molecular Foundary)

Mesoporous Titania: Karen Frindell, Galen Stucky (UC Santa Barbara)

Funding

Dreyfus Foundation Petroleum Research Fund Center for Polymer Interfaces and Macromolecular Assemblies

Global Climate & Energy Project STANFORD UNIVERSITY