
Co-Evolution of Computing Systems and the Social Sciences

Rob Axtel I

Center for Social Complexity/George Mason University Center for Social and Economic Dynamics/Brookings Institution External Faculty Member/Santa Fe Institute

raxtell@gmu.edu

GMU Center for Social Complexity

The Hard Sciences

- Increasingly, engineering is *challenging* because:
 - Projects are *large-scale* (multi-scale) and *complex*...
 - ... with many *interacting* (smart) components...
 - ... yet need to provide *robust* solutions.
- Social science has always been *difficult* because:
 - People are *heterogeneous*...
 - ...and cognitively *complex* (but *sub-rational*)...
 - ...and interact through *social networks* while...
 - ...social regularities emerge (agent-level equilibrium *sufficient* but not necessary)
- Existing mathematical tools are inadequate

Historical Interface of Engineering and Social Science

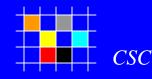
- Supportive role of social science in engineering:
 - Psychology and cog sci for designing user interfaces
 - Economics and finance for bringing ideas to *market*
 - Political science and the law for appropriate *regulation*
- Supportive role of engineering in social science:
 - Technology makes social science research *more* productive (e.g., running a million regressions)...
 - ...while facilitating *new kinds* of research (e.g., survey analysis via phone interviews or large scale simulation via high performance computing)

Few Strategies For Dealing with Complex Systems

- Homogeneous components, heterogeneous behavior: *statistical mechanics (physics)*
- Heterogeneous components, homogeneous behavior: *general equilibrium (economics)*
- 'Well-mixed' systems: mean field theory
- 'Scaleable' systems: *representative* components and *aggregation*

Computing Systems

- Used to resemble physical systems:
 - Homogeneous components
 - Single or few functions
 - Closely located 'off' switch with human backup
 - Dominant methodology: design and optimization
- But today increasingly resemble social systems:
 - Heterogeneous components
 - Diverse functionality
 - Maybe impossible to disable—single human or team not viable as backup
 - Dominant methodology: ???


Need New Methodol ogy for Large-Scale, Complex Systems

- Before we understood the whole by focusing on the parts (reductionism)
- Today we need to focus on the *interactions* between the parts to understand the whole
- We need a new science of the *emergence* of higherlevel structure and function
- Need to replace *design* with *evolution*
- Replace *optimization* (best) with *regulation* (robust)

Beyond Optimization...

- In a world dominated by *analysis* and *first order conditions*, we care about the *optimum*
- *Nature* may be more concerned with performance *improvements* than optima (satisficing)...
- ...and with *robustness* instead of extremes
- Solving for optimality...
 - ...may lead to *brittle* solutions
 - ... is vestigal from top-down, *centralized* mindset

Need New Methodol ogy for Large-Scale, Complex Systems

- Before we understood the whole by focusing on the parts (reductionism)
- Today we need to focus on the *interactions* between the parts to understand the whole
- We need a new science of the *emergence* of higher-level structure and function
- Need to replace *design* with *evolution*
- Replace *optimization* (best) with *regulation* (robust)
- Need to replace *centralized mindset*

CSC

Constrasting Mindsets

<u>1950s</u>:

CSC

- *Global* information, *centralized* control
- Math. programming: *scalar* value function
- Firm as *rational* actor
- Neoclassical utility: constrained *maximization*
- Arrow-Debreu markets: *single* price vector
- *Decision* theory
- Conventional AI

<u>Now</u>:

- Local info., networks, distributed control
- *Diverse* representations: competing world views
- Many-agent firms
- Behavioral economics: *multiple* selves
- *Decentralized* markets: heterogeneous prices
- *Game* theory
- DAI and MAS

New Methodol ogy: Mul ti-Agent Systems (MAS)

- *Autonomous* software objects (10-10⁹)
- Agents have *local* state information, heterogeneous *goals* and *behavior*
- Agents interact on a graph
- Agents are *intelligent* but not perfectly rational; *adaptive*, not omniscient
- Agents learn socially and may *evolve*
- Agents may reach equilibrium, or not!

Agent Examples

- Engineering:
 - BT: software 'ants' to seek out network problems
- Epidemiology
 - Bioterror smallpox, SARS, avian flu: vaccinate or isolate?
- Traffic
 - 10⁶ agent models of Albuquerque, Dallas, Portland, etc.
- Finance
 - High fidelity model of the NASDAQ (pre decimalization)
- Military
 - Combat simulations used to develop policy
- Anthropology

– Microsimulation of the Anasazi (2000 BP - 700 BP)

MAS Macroeconomics (aka Macro from the Bottom Up)

- Full-scale model of the U.S. economy:
 - 150 million agents (workers, consumers)
 - 6 million firms (each firm a MAS)
- Calibration by micro-data (e.g. Census)
- How to run such a model?

CSC

- -10^8 agents x 10³ bytes/agent = 100 gigabytes
- O(100) CPUs each with 1 GB memory
- Parallelize into 'artificial cities'
- Intra-city communication faster than inter-city

MAS are Social Systems

- Active research areas in MAS have direct analogs in social science:
 - communication/speech acts/linguistics
 - social networks
 - strategic behavior
 - learning
 - coalition formation
 - emotions

CSC

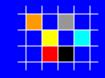
- Social science an alternative foundation for CS?
 - work of Peter Wegner on *interactive computing*

Co-Evol ution of Computing Technol ogy and Social Science

- Today:
 - Ideas from social science useful for computer science
 - Resulting technologies will enrich the social sciences
- This leads to *co-evolution*:
 - More powerful technologies make us better able to understand societies
 - This new understanding will lead to better computing technologies

Example: IT as Social Systems

- Decentralized systems via *market-oriented programming*
- Automated *negotiation* and *allocation* via auction protocols (e.g., Dutch, English auctions)
- Better agent services by recognizing the *bounded rationality* of users
- Ultimately, *regulation* of IT systems by trust mechanisms and *enforcement* agents


Example: Mechanism Design

- Within game theory, *mechanism design* yields environments with optimal welfare properties *iff* all agents are rational
- Example: Vickery (second price) auction
- Mechanism design widely adopted in IT
- Practical problems:
 - Mechanisms can be NP-hard to synthesize
 - Required (rational) behavior of agents may be NP-hard for them to figure out


Example: Network Design

- Before, a network was explicitly designed
 - Single agent understood all states of network
 - Global optimization meaningful
- Today, network implicitly designed
 - Design of local protocols only
 - Macro performance emerges
 - Only local optimization meaningful
- Future, network evolves
 - Optimization gives way to adaptive changes

Summary and Conclusions

- Need *new methodology* for large-scale, complex systems
- Social science deals with similar problems
- Agents are the interface
- Meaningful *coevolution* of computing systems and social science underway
- The future is wide open!

Popular Accounts

- J. Rauch (2002) "Seeing Around Corners" *The Atlantic Monthly* (April)
- E. Bonabeau in *Harvard Business Review*
 - (2001) "Swarm Intelligence: A Whole New Way to Think About Business
 - (2002) "Predicting the Unpredictable"
- C. Bourges (2002) "Artificial Societies May Make Policy" UPI (May 12)
- M. Crichton (2002) *Prey* Harper-Collins
- J. Diamond (2004) Collapse

- Decision theory:
 - Strategic behavior ('games') against possibly dynamic but non-adaptive opponent (Nature)
 - Nature represented stochastically (stationary)
 - Normative (what you 'should' do)
- Game theory:

CSC

- Strategic behavior against strategic opponent
- Opponent arbitrarily complex
- Both *normative* and *positive* aspects
 - Weak empirical support for positive predictions

$OR \subset MAS$

• Operations research:

- Characterize operation with *single* formal representation (mathematical or simulation model)
- *Extremize* (scalar) value function (e.g., LP, DP) yielding...
- ...*Normative* prescriptions for operating policies
- More comfortable with decision theory than game theory
- Multi-agent systems:
 - Each *agent* has an internal representation...
 - ...and acts to *improve* its value function
 - Key question: What *emerges* at the societal level?
 - Both *positive* and *normative* aspects
 - Game theory more useful than decision theory

