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Overview:

 personal mobility

e congestion

 vehicle emissions and fuel consumption

* intelligent transportation systems and examples
 other personal mobility options
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Personal Mobility:

« personal mobility is an important part of a progressive society
« the automobile has become essential element of life
« our mobility is often restricted due to limitations in
transportation infrastructure
e resource management problem:
 if resources (transportation infrastructure) are limited and
demand is high, congestion occurs
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Roadway Congestion

« Texas Transportation Institute Annual Mobility Study:
e http://mobility.tamu.edu/ums
e congestion has grown everywhere in areas of all sizes
e congestion occurs during longer portions of the day and
delays more travelers and goods than ever before
 Dillions of gallons of fuel are wasted every year, more
emissions

Hours of Delay
per Traveler

Small Medium Large Very Large

Population Area Size

|
“slow speeds caused by heavy traffic and/or narrow roadways
dueto construction, incidents, or too few lanes for the demand”
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Air Quality

air quality in Southern California
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Manage Supply:

Manage Demand:

Manage Land Use:

University of California, Riverside

Bourns College of Engineering
General Solutions to Congestion \

build more lanes to increase roadway capacity

build more infrastructure for alternative modes (bike, rail, transit)
shown to be more cost effective (Lipman, 2006)

Improve system operations (e.g., respond quickly to incidents)
Implement intelligent transportation system techniques

Implement pricing mechanisms to limit use of resources
provide greater range of alternative modes

allow for alternative work locations and schedules

have employers provide travel support programs

Implement better urban design

provide for mixed use development of land
Increase housing and industrial density
allow for innovative planning and zoning

Implement some type of growth management N J%
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United States Transportation Systems

« automobile-centric

« little demand and opportunity for alternative modes

e 1950’s —1990’s: major build out of roadway network

* Inmany areas it is now difficult to construct new roadways:
 higher population densities
 land-use restrictions

Traffic Growth With Added Capacity
= Traffle Growth Without Added Capacity

Projected ’ A
Traffic y Gensrated
Erowth Traffic I

Traffic Volume as Portion
of Lane Capacity

Roadway )
Capacity ~ from (Litman, 2001)
Added
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/ Transportation and Emissions Modeling

Transportation Modeling:

 wide variety of tools: travel demand modeling, macroscale to
microscale operational models

Microscale Emissions and Fuel Consumption Modeling:

e prediction of second-by-second emissions and fuel consumption
from a wide variety of vehicles

 based on real-world emissions measurements using a large set of
driving conditions
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Microscopic Traffic Models

models individual behaviors of vehicles:

car following behavior
lane-change behavior
&ml(t + Dtn+l) = Sn+1 [)&n (t) : &ml(t)] un.+1 - reaCt?O"] del ay
[%.() - X.a(D)] S ,: aggressive or passive behavior parameter

* truck lane analysis

- PARAMICS T * HOT (high

occupancy toll) lane

integration with

CMEM ’ analysis

e tunnel study
* BRT (bus rapid
transit)
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Roadway Congestion

« Roadway congestion is often categorized as different “levels of
service” (LOS)
« grades A —F: corresponds to traffic density
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Congestion-Based Fuel Consumption and Emissions
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« can plot as a function of average speed
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Congestion-Based Fuel Consumption and Emissions

Anytime congestion brings average vehicle speed below 45 mph (for a
freeway scenario), there is a net negative fuel consumption and
emissions impact; vehicles are spending more time on the road and as
a result fuel economy is worse and total emissions is greater

If congestion brings average speed down from a freeflow speed of
around 65 mph to a slower 45 - 50 mph, then congestion is actually
helping improve fuel consumption and emissions

If relieving the congestion such that the average traffic speed increases
back to the freeflow state, fuel consumption and emissions increases

If the real-world stop-and-go velocity pattern of vehicles were somehow
smoothed out where average speed was preserved, then significant fuel
consumption and emissions savings could be achieved

similar (but more complex) for arterial and residential roads

fuel/emissions congestion effects are more pronounced with heavy-duty

trucks (lower power-to-weight ratios) )
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Emissions Comparison of HOV with Mixed Flow
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HOV Lane Air Quality Findings

Under the same traffic conditions, traffic dynamics in HOV lanes are
not significantly different from those in mixed-flow lanes

Travel speed in HOV lanes are relatively higher than that in MF lanes
for most of the time.

Under free-flow condition, extremely high speed travel in HOV lanes
can result in higher emissions per vehicle-mile.

With higher people-moving capacity, HOV lanes produce less
emissions per person-mile across all scenarios.
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Intelligent Transportation Systems

Improving capacity of existing infrastructure through the use
of computers, communications, and control technology

User Services Bundle

User Services

Travel and Transportation
Management

* En-Route Driver Information

» Route Guidance

» Traveler Services Information

» Traffic Control

* Incident Management

*» Emissions Testing and Mitigation

* Demand Management and Operations
¢ Pre-trip Travel Information

» Ride Matching and Reservation

¢ Highwav Rail Intersection

Public Transportation Operations

¢ Public Transportation Management
* En-Route Transit Information

* Personalized Public Transit

» Public Travel Security

Electronic Payment

o Flectronic Payment Services

Commercial Vehicle Operations

» Commercial Vehicle Electronic Clearance

* Automated Roadside Safety Inspection

* On-board Safety Monitoring

» Commercial Vehicle Administration Processes
*» Hazardous Materials Incident Response

» Freight Mobility

Emergency Management

* Emergency Notification and Personal Security
» Emergency Vehicle Management

Advanced Vehicle Control and
Safety Systems

e Longitudinal Collision Avoidance

» [ateral Collision Avoidance

» Intersection Collision Avoidance

» Vision Enhancement for Crash Avoidance
» Safety Readiness

e Pre-Crash Restraint Deployment

» Automated Highway System

Cantar far Envirnnmantal Dacaarrh and TarhnalnAy




University of California, Riverside
Bourns College of Engineering

Electronic Eavmentt Driver & A'é:ggﬁ;‘gve
Payment eques! Traveler 9
Services Services Emergency

botificatiop

Intelligent Transportation Systems

Emergency

Services

Payment

Financial
Institution

Route E911 Incident

Reques Data
Route
nformation
s Route
Coawii'l-:lal Information Manage
. Transit Archive
Operations Data
\ fTral’fl;;I Planning
Commercial niormatio RF;”‘:IL"S%S Data
Vehicle : ITS
Congestion Planners
Information
. ehicle
Vz_ehn‘:le Status Manage
Monitoring & Traffic
Control
Tratfic Incident
Bas.lc Control Incident Information

Vehicle Information Notification

Lday Wide Arva Winoless
+ Yaliow Fagas »
* Routn Gaidancs | Trafio informatica

Cantar far Envirnnmantal Dacaarrh and TarhnalnAy




University of California, Riverside

m Bourns College of Engineering \
/ Example ITS Application: Intelligent Speed Adaptation

e process that monitors the current speed of a vehicle,
compares it to an externally defined set speed, and takes
corrective action

Different Forms:

» fixed: max permissible speed is set by the user; control system
never exceeds this;

e variable: set speed is determined by vehicle location, where
different speed limits are set spatially

o dynamic: speed is determined by time and location: temporal
aspect varies based on road network conditions or weather

Driving Behavior Intervention:

e advisory, active support, and mandatory

Qenefits: safety, lower congestion, lower environmental impacts
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Intelligent Speed Adaptation Experimentation
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Intelligent Speed Adaptation: Preliminary Results
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/ Vehicular Ad-Hoc Networks (VANET)

e Wwireless communications vehicle-to-vehicle and
vehicle-to-infrastructure is a hot research topic i S R

« extension of wireless ad-hoc networking to mobile
platforms

« many applications aimed at safety improvements

« other applications: self-organizing traffic information . t
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/ Shared-Use Vehicle Systems
(a.k.a. carsharing, station cars).

— organized short-term car rental
— joint access to a fleet of vehicles

— vehicles are used multiple times by multiple users

Key Benefits.

— Improves transportation efficiency:
e reduces number of vehicles to meet total travel demand
e results in better land use

— user cost savings: vehicle payments, insurance, maintenance, etc.

— environmental benefit: lower vehicle emissions/energy

— transit ridership: improves access to transit
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Primary Shared-Use Vehicle System Models

shared cal AIRPORT
parking
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WEI'SIOE

County

UCR Carsharing
System:
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Smart Parking

« parking is costly and limited in almost every major city in the U.S.,
contributing to increased congestion, air pollution, and driver frustration
« Smart parking Management:

« use of advanced technologies to help direct drivers efficiently to
available parking spaces
 encourages transit ridership

« lessens driver frustration
« reduces congestion on roadways

e Approaches:

« dynamic displays on roadway signs
informing drivers of location and
parking lot capacity

« the Internet, and cell phones:
providing space availability, location,

and pricing information
]
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Transit Oriented Developments:
« promote transit use through the integration of multiple transit
options in high-density developments consisting of residential,

commercial, and retail entities
Bus Rapid Transit:

« non-fixed rail transit system
 significantly less expensive then light-rail

Innovative Mobility Modes:
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Summary and Future Directions

« Congestion will always be with us (induced demand
effect)

 Necessity to go beyond an automobile-centric society

« Emissions: pollutant emphasis shift from cars to trucks
to trains/ships

 Future Vehicles: hybrid electrics will continue to play an
iImportant role well into the future

 Application of Intelligent Transportation Solutions

 Increased automation in transportation
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