Supply Chain Management under the Threat of Disruptions

Lawrence V. Snyder

Department of Industrial & Systems Engineering Center for Value Chain Research Lehigh University Bethlehem, PA

U.S. Frontiers of Engineering Symposium, Dearborn, MI September 23, 2006

Outline

3 Supply vs. Demand Uncertainty

Snyder / US FOE 2006 SCM with Disruptions

State of the Art Supply vs. Demand Uncertainty Conclusions Disruptions in Multi-Stage Systems Modeling Supply Uncertainty

Outline

1 Motivation

- Disruptions in Multi-Stage Systems
- Modeling Supply Uncertainty

2 State of the Art

- Inventory Models
- Strategic Questions
- Multi-Echelon Models

Supply vs. Demand Uncertainty

- Introduction
- Inventory Placement
- Network Structure
- The Cost of Reliability

Conclusions

State of the Art Supply vs. Demand Uncertainty Conclusions Disruptions in Multi-Stage Systems Modeling Supply Uncertainty

Supply Chain Disruptions

- All supply chains are subject to disruptions
- Common sources
 - Natural disasters, weather
 - Strikes
 - Terrorism, war
 - Product defects
 - Equipment breakdowns
 - Transit/customs delays
 - Supplier bankruptcy
 - etc.
- Only recently have academics and practitioners studied supply disruptions in earnest

Disruptions in Multi-Stage Systems Modeling Supply Uncertainty

Why the Recent Interest in Disruptions?

• Supply chain disruptions are as old as supply chains:

East India Company

Wells Fargo

State of the Art Supply vs. Demand Uncertainty Conclusions Disruptions in Multi-Stage Systems Modeling Supply Uncertainty

Why the Recent Interest? (cont'd)

Recent high-profile disruptions

- September 11 (2001)
- West-coast port lockout (2002)
- Flu vaccine shortage (2004)
- Hurricanes Katrina and Rita (2005)
- Bird-flu pandemic (???)

State of the Art Supply vs. Demand Uncertainty Conclusions Disruptions in Multi-Stage Systems Modeling Supply Uncertainty

Why the Recent Interest? (cont'd)

Recent high-profile disruptions

- September 11 (2001)
- West-coast port lockout (2002)
- Flu vaccine shortage (2004)
- Hurricanes Katrina and Rita (2005)
- Bird-flu pandemic (???)
- Focus on lean supply chain management
 - aka just-in-time (JIT), etc.
 - Systems contain very little slack
 - Very efficient—as long as there is little uncertainty
 - Very fragile—easily disrupted
 - There is value to having slack in a system.

State of the Art Supply vs. Demand Uncertainty Conclusions Disruptions in Multi-Stage Systems Modeling Supply Uncertainty

Why the Recent Interest? (cont'd)

Increasingly global supply chains

- A single supply chain may span the globe
- Firms are less vertically integrated
 - "Manufacturing" firms may actually manufacture very little
 - Instead, they assemble components that are made by suppliers
 - Thomas Friedman, The World is Flat
- Firms depend critically on parts from unstable regions
 - Unstable politically, economically, militarily, climatologically, seismically, ...
 - Barry Lynn, End of the Line

State of the Art Supply vs. Demand Uncertainty Conclusions Disruptions in Multi-Stage Systems Modeling Supply Uncertainty

Cascading Disruptions

- Supply chains consist of many locations ("stages")
- Stages are grouped into tiers ("echelons")
- Disruptions are never purely local
- They cascade through the system
- Upstream disruptions cause downstream stockouts

Disruptions in Multi-Stage Systems Modeling Supply Uncertainty

Cascading Disruptions: GM Example

• In 1998, strikes at two General Motors parts plants

Disruptions in Multi-Stage Systems Modeling Supply Uncertainty

Cascading Disruptions: GM Example

• In 1998, strikes at two General Motors parts plants

Disruptions in Multi-Stage Systems Modeling Supply Uncertainty

- In 1998, strikes at two General Motors parts plants
- Led to shutdown of 100+ other parts plants...

Disruptions in Multi-Stage Systems Modeling Supply Uncertainty

- In 1998, strikes at two General Motors parts plants
- Led to shutdown of 100+ other parts plants...
- ...and then to closures of 26 assembly plants...

Disruptions in Multi-Stage Systems Modeling Supply Uncertainty

- In 1998, strikes at two General Motors parts plants
- Led to shutdown of 100+ other parts plants...
- ...and then to closures of 26 assembly plants...
- ...and finally to vacant dealer lots for months

Disruptions in Multi-Stage Systems Modeling Supply Uncertainty

- In 1998, strikes at two General Motors parts plants
- Led to shutdown of 100+ other parts plants...
- ...and then to closures of 26 assembly plants...
- ...and finally to vacant dealer lots for months
- 500K cars, 37% \downarrow sales, 33% \downarrow market share, \$809M qrtly loss

State of the Art Supply vs. Demand Uncertainty Conclusions Disruptions in Multi-Stage Systems Modeling Supply Uncertainty

A Scarier Example

- A terrorist attack on New York Harbor in winter would halt shipments of heating fuel
- New England and upstate New York would run out of heating fuel within 10 days
 - (according to national security analysis)
- Even a temporary halt would have significant cascading effects

Source: Finnegan (2006)

Disruptions in Multi-Stage Systems Modeling Supply Uncertainty

Most Research is on Single-Stage Systems

- Despite the importance of studying disruptions in a multi-stage context, most research focuses on a single stage
 - e.g., how should a firm plan for disruptions to its suppliers or itself?
 - Examines purely local effects
- (There are a few exceptions)
- I will discuss some insights about disruptions in multi-stage systems

State of the Art Supply vs. Demand Uncertainty Conclusions Disruptions in Multi-Stage Systems Modeling Supply Uncertainty

- Inventory
 - Toy stores stock up on Tickle-Me-Elmo in anticipation of supply shortages

State of the Art Supply vs. Demand Uncertainty Conclusions Disruptions in Multi-Stage Systems Modeling Supply Uncertainty

- Inventory
 - Toy stores stock up on Tickle-Me-Elmo in anticipation of supply shortages
- Pre-positioning
 - FEMA did a poor job of this before Katrina
 - Wal-Mart did an excellent job
 - What supplies did they pre-position?

State of the Art Supply vs. Demand Uncertainty Conclusions Disruptions in Multi-Stage Systems Modeling Supply Uncertainty

- Inventory
 - Toy stores stock up on Tickle-Me-Elmo in anticipation of supply shortages
- Pre-positioning
 - FEMA did a poor job of this before Katrina
 - Wal-Mart did an excellent job
 - What supplies did they pre-position?
 - 1 2 3 4 5

State of the Art Supply vs. Demand Uncertainty Conclusions

Disruptions in Multi-Stage Systems Modeling Supply Uncertainty

- Inventory
 - Toy stores stock up on Tickle-Me-Elmo in anticipation of supply shortages
- Pre-positioning
 - FEMA did a poor job of this before Katrina
 - Wal-Mart did an excellent job
 - What supplies did they pre-position?
 - Bottled water
 - 2 3 4
 - 6

State of the Art Supply vs. Demand Uncertainty Conclusions

Disruptions in Multi-Stage Systems Modeling Supply Uncertainty

- Inventory
 - Toy stores stock up on Tickle-Me-Elmo in anticipation of supply shortages
- Pre-positioning
 - FEMA did a poor job of this before Katrina
 - Wal-Mart did an excellent job
 - What supplies did they pre-position?
 - Bottled water
 - 2 Flashlights
 - 3
 - 4

State of the Art Supply vs. Demand Uncertainty Conclusions Disruptions in Multi-Stage Systems Modeling Supply Uncertainty

- Inventory
 - Toy stores stock up on Tickle-Me-Elmo in anticipation of supply shortages
- Pre-positioning
 - FEMA did a poor job of this before Katrina
 - Wal-Mart did an excellent job
 - What supplies did they pre-position?
 - Bottled water
 - 2 Flashlights
 - Generators
 - 4
 - 6

State of the Art Supply vs. Demand Uncertainty Conclusions Disruptions in Multi-Stage Systems Modeling Supply Uncertainty

- Inventory
 - Toy stores stock up on Tickle-Me-Elmo in anticipation of supply shortages
- Pre-positioning
 - FEMA did a poor job of this before Katrina
 - Wal-Mart did an excellent job
 - What supplies did they pre-position?
 - Bottled water
 - 2 Flashlights
 - Generators
 - 4 Tarps
 - 5

State of the Art Supply vs. Demand Uncertainty Conclusions Disruptions in Multi-Stage Systems Modeling Supply Uncertainty

- Inventory
 - Toy stores stock up on Tickle-Me-Elmo in anticipation of supply shortages
- Pre-positioning
 - FEMA did a poor job of this before Katrina
 - Wal-Mart did an excellent job
 - What supplies did they pre-position?
 - Bottled water
 - 2 Flashlights
 - Generators
 - Tarps
 - Op-Tarts

State of the Art Supply vs. Demand Uncertainty Conclusions Disruptions in Multi-Stage Systems Modeling Supply Uncertainty

Strategies for Coping with Disruptions (cont'd)

- Redundant suppliers
 - Nokia's backup suppliers mitigated fire at Philips semiconductor plant in 2000
 - Spot markets

State of the Art Supply vs. Demand Uncertainty Conclusions Disruptions in Multi-Stage Systems Modeling Supply Uncertainty

Strategies for Coping with Disruptions (cont'd)

- Redundant suppliers
 - Nokia's backup suppliers mitigated fire at Philips semiconductor plant in 2000
 - Spot markets
- Excess capacity
 - Firms routinely maintain extra capacity for demand surges—also effective for supply disruptions
 - Airlines?

State of the Art Supply vs. Demand Uncertainty Conclusions Disruptions in Multi-Stage Systems Modeling Supply Uncertainty

Strategies for Coping with Disruptions (cont'd)

- Redundant suppliers
 - Nokia's backup suppliers mitigated fire at Philips semiconductor plant in 2000
 - Spot markets
- Excess capacity
 - Firms routinely maintain extra capacity for demand surges—also effective for supply disruptions
 - Airlines?
- Demand management
 - After 1999 Taiwan earthquake, Dell shifted demand to lower-memory PCs

State of the Art Supply vs. Demand Uncertainty Conclusions Disruptions in Multi-Stage Systems Modeling Supply Uncertainty

Strategies for Coping with Disruptions (cont'd)

- Redundant suppliers
 - Nokia's backup suppliers mitigated fire at Philips semiconductor plant in 2000
 - Spot markets
- Excess capacity
 - Firms routinely maintain extra capacity for demand surges—also effective for supply disruptions
 - Airlines?
- Demand management
 - After 1999 Taiwan earthquake, Dell shifted demand to lower-memory PCs
- Acceptance

Except the last two, these are all **proactive** strategies.

State of the Art Supply vs. Demand Uncertainty Conclusions Disruptions in Multi-Stage Systems Modeling Supply Uncertainty

Modeling Disruptions

- Typically, disruptions modeled as a Markov process
- In each period, a given stage is either UP or DOWN
- $\alpha = \text{failure prob.} = P(\text{DOWN next period}|\text{UP this period})$
- β = recovery prob. = P(UP next period|DOWN this period)
- Length of time stage is UP is geometrically distributed
 - Same for DOWN
- Can make it more general
- Parameter estimation can be a big problem

Inventory Models Strategic Questions Multi-Echelon Models

Outline

MotivationDisruptions in Multi-Stage Systems

Modeling Supply Uncertainty

2 State of the Art

- Inventory Models
- Strategic Questions
- Multi-Echelon Models
- 3 Supply vs. Demand Uncertainty
 - Introduction
 - Inventory Placement
 - Network Structure
 - The Cost of Reliability

Conclusions

Inventory Models Strategic Questions Multi-Echelon Models

A Brief Overview of Inventory Theory

- Deterministic models
 - Key tradeoff: Fixed vs. holding cost
 - i.e., place large orders or small?

Inventory Models Strategic Questions Multi-Echelon Models

A Brief Overview of Inventory Theory

- Deterministic models
 - Key tradeoff: Fixed vs. holding cost
 - i.e., place large orders or small?
- Stochastic models
 - Usually stochastic demand
 - Usually normally distributed or similar
 - Key tradeoff: Holding vs. stockout cost
 - Some models also include fixed cost

Inventory Models Strategic Questions Multi-Echelon Models

The Economic Order Quantity (EOQ) Model

- Demand is deterministic, constant
- Fixed cost to order, holding cost to store inventory
- Inventory curve:

Objective: Find optimal Q to minimize average cost per year
Harris (1913)

Inventory Models Strategic Questions Multi-Echelon Models

EOQ with Disruptions

• Now suppose supplier may be "down" when firm places order

- Harder to find optimal Q
- Parlar and Berkin (1991), Berk and Arreola-Risa (1994)
- Order before inventory hits 0: Parlar and Perry (1995, 1996)
- Stochastic demand: Gupta (1996), Parlar (1997), Mohebbi (2003, 2004)

Inventory Models Strategic Questions Multi-Echelon Models

The Newsboy Problem

• Or my version: The Hot Dog Stand Problem
Inventory Models Strategic Questions Multi-Echelon Models

The Newsboy Problem

- Or my version: The Hot Dog Stand Problem
- Each morning, hot dog vendor goes to supplier to buy hot dogs
- Daily demand is random
- No opportunity to buy more if he runs out
- Leftover hot dogs can be kept until tomorrow, at a cost
- How many hot dogs should he buy?

Inventory Models Strategic Questions Multi-Echelon Models

The Newsboy Problem (cont'd)

- Optimal # to buy = mean + some number of SD's
- Optimal # of SD's depends on holding and stockout cost

Inventory Models Strategic Questions Multi-Echelon Models

The Newsboy Problem (cont'd)

- Optimal # to buy = mean + some number of SD's
- Optimal # of SD's depends on holding and stockout cost

- Now suppose supplier may experience disruptions
 - But demand is deterministic
- Maybe buy extra hot dogs today in case supplier is down tomorrow
- Optimal order quantity has same form
 - But distribution refers to supply, rather than demand
 - Tomlin (2006)

Inventory Models Strategic Questions Multi-Echelon Models

Disruptions in Inventory Models

- Starting in the early 1990s, disruptions embedded into classical inventory models
- All are single-stage models
- Most must be solved numerically
 - Even if non-disruption models can be solved analytically
- General insight:
 - Hold more inventory

Inventory Models Strategic Questions Multi-Echelon Models

Strategic Questions

- More recently, papers addressing strategic questions
- What strategy is optimal?
- How does this change as disruption characteristics change?
- Tomlin (2006)

Inventory Models Strategic Questions Multi-Echelon Models

Strategic Questions, (cont'd)

- Extensions:
 - Supplier flexibility: Tomlin and Wang (2004)
 - Advanced warning: Tomlin and Snyder (2006)
- Effect of border closures: Lewis, Erera, and White (2005)
- Error from "bundling" disruptions and yield uncertainty: Chopra et al. (2005), Schmitt and Snyder (2006)

Inventory Models Strategic Questions Multi-Echelon Models

Multi-Echelon Models

- Kim et al. (2005)
 - Yield uncertainty in 3-echelon SC, risk-averse objective
- Hopp and Yin (2006)
 - Optimal placement and size of inventory and capacity buffers in assembly network
 - More severe upstream disruptions
 ⇒ buffers further upstream

Inventory Models Strategic Questions Multi-Echelon Models

Facility Location Problems

- Nodes represent demand locations
- Where to open facilities? (plants, warehouses, distribution centers, etc.)

Inventory Models Strategic Questions Multi-Echelon Models

Facility Location Problems

- Nodes represent demand locations
- Where to open facilities? (plants, warehouses, distribution centers, etc.)

Inventory Models Strategic Questions Multi-Echelon Models

Facility Location with Disruptions

• How to choose facility locations so that the supply chain network is resilient to facility disruptions?

Inventory Models Strategic Questions Multi-Echelon Models

Facility Location with Disruptions

• How to choose facility locations so that the supply chain network is resilient to facility disruptions?

Inventory Models Strategic Questions Multi-Echelon Models

Facility Location with Disruptions

• How to choose facility locations so that the supply chain network is resilient to facility disruptions?

- Snyder and Daskin (2005), Berman et al. (2004), Church and Scaparra (2005), Qi et al. (2006)
- Tendency toward diversification: More facilities open than in classical models

Introduction Inventory Placement Network Structure The Cost of Reliability

Outline

Motivation

- Disruptions in Multi-Stage Systems
- Modeling Supply Uncertainty

2 State of the Art

- Inventory Models
- Strategic Questions
- Multi-Echelon Models

3 Supply vs. Demand Uncertainty

- Introduction
- Inventory Placement
- Network Structure
- The Cost of Reliability

Conclusions

Introduction Inventory Placement Network Structure The Cost of Reliability

Supply vs. Demand Uncertainty

- Demand uncertainty (DU):
 - Randomness in demand quantity, timing, product mix, etc.
- Supply uncertainty (SU):
 - Disruptions
 - Yield uncertainty
 - Lead-time uncertainty
 - etc.

Introduction Inventory Placement Network Structure The Cost of Reliability

Supply vs. Demand Uncertainty

- Demand uncertainty (DU):
 - Randomness in demand quantity, timing, product mix, etc.
- Supply uncertainty (SU):
 - Disruptions
 - Yield uncertainty
 - Lead-time uncertainty
 - etc.
- Under both DU and SU, the main issue is the same:
 - Not enough supply to meet demand
 - $\bullet\,$ May be irrelevant whether the mismatch came from DU or SU

Introduction Inventory Placement Network Structure The Cost of Reliability

Are DU and SU The Same?

- The mitigation strategies described a few minutes ago can be used for DU, too
 - Additional inventory, multiple suppliers, etc.
- **2** Newsboy model under SU is "mirror image" of that under DU
 - Clearly there is some relationship between them.

Introduction Inventory Placement Network Structure The Cost of Reliability

Good News and Bad News

- The good news:
 - We have been studying supply chains under DU for decades
 - We know a lot about them

Introduction Inventory Placement Network Structure The Cost of Reliability

Good News and Bad News

- The good news:
 - We have been studying supply chains under DU for decades
 - We know a lot about them
- The bad news:
 - $\bullet\,$ The "conventional wisdom" from DU is often wrong under SU
- We need to study supply chains under SU

Introduction Inventory Placement Network Structure The Cost of Reliability

Supply vs. Demand Uncertainty

- The optimal strategy under SU may be exactly opposite from that under DU
- Next up: A series of studies demonstrating this
- All consider multi-echelon supply chains
- Some results can be proven theoretically, others are demonstrated using simulation
- I will use terms like "firms" and "retailers"
 - But results are equally applicable to military, health care, humanitarian, and other non-commercial supply chains
- See Snyder and Shen (2006) for more details

Introduction Inventory Placement Network Structure The Cost of Reliability

Centralization vs. Decentralization

- Consider a system with one warehouse and *N* retailers
- Let's assume:
 - Cost of holding inventory is equal at the two echelons
 - Lead times are negligible

Key Question

Should we hold inventory at the warehouse or at the retailers?

Introduction Inventory Placement Network Structure The Cost of Reliability

Answer under DU

- $\bullet\,$ Suppose each retailer has mean demand μ and SD $\sigma\,$
- $\bullet\,$ Can show total cost is proportional to $\sigma\,$
- In decentralized system (hold inventory at retailers):
 - Total cost at one stage is proportional to $\sigma \textit{N}$
- In centralized system (hold inventory at warehouse):
 - Demand seen by warehouse has SD $\sigma\sqrt{N}$
 - Therefore total cost is proportional to $\sigma\sqrt{N}$
- Centralization is optimal
- This is the famous risk-pooling effect (Eppen 1979)

Introduction Inventory Placement Network Structure The Cost of Reliability

Answer under SU

- Suppose inventory sites are subject to disruptions
- Deterministic demand, $= \mu$ at each retailer
- In the decentralized system, a disruption affects only one retailer
- In the centralized system, a disruption affects the whole supply chain

Introduction Inventory Placement Network Structure The Cost of Reliability

Answer under SU

- Suppose inventory sites are subject to disruptions
- Deterministic demand, $= \mu$ at each retailer
- In the decentralized system, a disruption affects only one retailer
- In the centralized system, a disruption affects the whole supply chain
- Expected cost:
 - The expected cost is the same in either system
 - Proportional to Nd
 - $\bullet\,$ A given retailer is disrupted the same % of time in either

Introduction Inventory Placement Network Structure The Cost of Reliability

Answer under SU

- Suppose inventory sites are subject to disruptions
- Deterministic demand, $= \mu$ at each retailer
- In the decentralized system, a disruption affects only one retailer
- In the centralized system, a disruption affects the whole supply chain
- Expected cost:
 - The expected cost is the same in either system
 - Proportional to Nd
 - A given retailer is disrupted the same % of time in either
- Variance of cost:
 - The variance of cost is smaller in the decentralized system
 - Proportional to $N^2 d^2$ in centralized system
 - Proportional to Nd² in decentralized system

Introduction Inventory Placement Network Structure The Cost of Reliability

The Risk-Diversification Effect

- Therefore, under SU, decentralization is "optimal"
- Disruptions are equally frequent in either system but less severe in the decentralized one
- We call this the risk-diversification effect

Introduction Inventory Placement Network Structure The Cost of Reliability

Upstream vs. Downstream

- Consider a "serial" supply chain
- Cost of holding inventory is non-increasing as we move downstream

• Lead times are negligible

Key Question

Should we hold inventory upstream or downstream?

Introduction Inventory Placement Network Structure The Cost of Reliability

Inventory Placement, cont'd

- Under DU, conventional wisdom says hold inventory upstream
 - Holding costs increase as we move downstream
- But under SU, downstream inventory may be preferable
 - Protects against stockouts anywhere in the system
 - Depends on relative holding costs

Introduction Inventory Placement Network Structure The Cost of Reliability

Hub-and-Spoke vs. Point-to-Point Systems

Hub-and-Spoke:

Point-to-Point:

Key Question

Which type of network is preferred?

Snyder / US FOE 2006 SCM with Disruptions

Introduction Inventory Placement Network Structure The Cost of Reliability

Hub-and-Spoke vs. Point-to-Point Systems, cont'd

- Under DU, hub-and-spoke systems are optimal
 - Due to risk-pooling effect: fewer stocking locations
 - \implies smaller inventory requirement
- Under SU, point-to-point systems are optimal
 - Due to risk-diversification effect: more stocking locations
 - \implies reduced severity of disruptions

Introduction Inventory Placement Network Structure The Cost of Reliability

Supplier Redundancy

- Consider a single retailer with one or more suppliers
- Suppliers are identical in terms of cost, capacity, reliability

Key Question

What is the value of having backup suppliers?

Introduction Inventory Placement Network Structure The Cost of Reliability

Supplier Redundancy

- Consider a single retailer with one or more suppliers
- Suppliers are identical in terms of cost, capacity, reliability

Key Question

What is the value of having backup suppliers?

Introduction Inventory Placement Network Structure The Cost of Reliability

Supplier Redundancy

- Consider a single retailer with one or more suppliers
- Suppliers are identical in terms of cost, capacity, reliability

Key Question

What is the value of having backup suppliers?

Introduction Inventory Placement Network Structure The Cost of Reliability

Supplier Redundancy, cont'd

- Under DU, second supplier provides value if capacities are tight
 - e.g., if capacity $= \mu + \sigma$
 - But value decreases quickly as capacity increases
 - Third, etc. suppliers provide little value
- Under SU, second supplier provides great benefit
 - Fills in when primary supplier is disrupted
 - Also helps ramp back up after disruption
 - Even third+ supplier provides some benefit

Introduction Inventory Placement Network Structure The Cost of Reliability

Supplier Flexibility

- Related concept: supplier flexibility
- Multiple suppliers, multiple retailers
- Results are similar
- Closely related to process flexibility (Jordan and Graves 1995)
 - Bipartite network of jobs and workers
 - How much cross-training is required?
 - i.e., how dense should network be?

Introduction Inventory Placement Network Structure The Cost of Reliability

Supplier Flexibility

- Related concept: supplier flexibility
- Multiple suppliers, multiple retailers
- Results are similar
- Closely related to **process flexibility** (Jordan and Graves 1995)
 - Bipartite network of jobs and workers
 - How much cross-training is required?
 - i.e., how dense should network be?

Introduction Inventory Placement Network Structure The Cost of Reliability

Supplier Flexibility

- Related concept: supplier flexibility
- Multiple suppliers, multiple retailers
- Results are similar
- Closely related to **process flexibility** (Jordan and Graves 1995)
 - Bipartite network of jobs and workers
 - How much cross-training is required?
 - i.e., how dense should network be?

Introduction Inventory Placement Network Structure The Cost of Reliability

Supplier Flexibility

- Related concept: supplier flexibility
- Multiple suppliers, multiple retailers
- Results are similar
- Closely related to **process flexibility** (Jordan and Graves 1995)
 - Bipartite network of jobs and workers
 - How much cross-training is required?
 - i.e., how dense should network be?

Introduction Inventory Placement Network Structure The Cost of Reliability

Facility Location under DU

- Tendency toward consolidation
- Open fewer facilities due to risk-pooling effect and economies of scale (Daskin, Coullard, and Shen 2002)

Introduction Inventory Placement Network Structure The Cost of Reliability

Facility Location under SU

- Tendency toward diversification
- Open more facilities due to risk-diversification effect (Snyder and Daskin 2005)
- More recent model finds balance between the two under both DU and SU (Jeon and Snyder 2006)

Introduction Inventory Placement Network Structure The Cost of Reliability

The Cost of Reliability

- Firms are used to planning for DU
- Often reluctant to plan for SU if it requires large investment in inventory or infrastructure

Key Question

How much DU cost must be sacrificed to achieve a given level of reliability?

Introduction Inventory Placement Network Structure The Cost of Reliability

The Cost of Reliability

- Firms are used to planning for DU
- Often reluctant to plan for SU if it requires large investment in inventory or infrastructure

Key Question

How much DU cost must be sacrificed to achieve a given level of reliability?

• The short answer: Not much

Introduction Inventory Placement Network Structure The Cost of Reliability

Tradeoff Curve

- Each point represents a solution
 - Left-most point is "optimal" solution considering DU only
 - \bullet Second point: 21% fewer stockouts, 2% more expensive
- "Steep" left-hand side of tradeoff curve is fairly typical
 - Especially for combinatorial problems

Outline

Motivation

- Disruptions in Multi-Stage Systems
- Modeling Supply Uncertainty

2 State of the Art

- Inventory Models
- Strategic Questions
- Multi-Echelon Models

Supply vs. Demand Uncertainty

- Introduction
- Inventory Placement
- Network Structure
- The Cost of Reliability

Conclusions

Conclusions

- Optimal strategy under SU is often exact opposite from that under DU
 - That's not to say firms are doing everything wrong
 - But SU should be accounted for more than it is
 - Strategy chosen should account for both
- Many of these results boil down to risk-diversification effect
 - Disruptions are less severe when eggs aren't all in one basket
- Tradeoff between cost and reliability is often steep
 - Large improvements in reliability with small increases in cost

My Research Wish List

- Strategies for modeling and mitigating cascading of disruptions
- Methods for identify bottlenecks/vulnerability points
- Methods for identifying buffer points
- Good models (or approximations) that include both DU and SU
- Formal relationship between DU and SU
- Robust models: Insensitive to errors in disruption parameters

Acknowledgments

- Joint work with Z. Max Shen (Berkeley IE/OR)
- Supported by National Science Foundation grant #DMI-0522725

Questions?

larry.snyder@lehigh.edu

Snyder / US FOE 2006 SCM with Disruptions