Engineering-Based Methods for Affordable Housing and Sustainable Community Development

Michael P. Johnson H. John Heinz III School of Public Policy and Management Carnegie Mellon University Pittsburgh, PA johnson2@andrew.cmu.edu

2006 U.S. Frontiers of Engineering Symposium, Dearborn, MI September 23, 2006

Overview and Acknowledgments

n Goals:

- Demonstrate the value decision modeling adds to important problems in urban affairs
- Praw links between supply chain analysis and human services provision
- n I'd Like to thank...
 - National Science Foundation Faculty Early Career Development (CAREER) Program SES-0134890
 - Vincent Chiou, Changmi Jung, Jeannie Kim, Jiyoung Kim, Terence Cordero, Meredith Fisher, Julius Snell, Philip Akol

Overview

- Policy and research motivation
- n Engineering-based methods: housing construction
- In Urban and regional planning: affordable housing and community development
- n Decision science methods: policy design and decision support
- n Discussion and research extensions
- n Conclusion

Overview

n Policy and research motivation

- n Engineering-based methods: housing construction
- In Urban and regional planning: affordable housing and community development
- n Decision science methods: policy design and decision support
- n Discussion and research extensions
- n Conclusion

Housing and Community Development is an Important Public Policy Issue

- Real estate is one of the largest sectors of the U.S. economy (23% of U.S. GDP) and a primary source of individual wealth (\$700 billion in equity)
- Many benefits of homeownership and rental housing in stable, opportunity-rich communities
- **n** However, current housing trends are unfavorable:
 - **Homeownership gap between whites and minorities**
 - **Downward trends in owner-occupied and rental markets**
 - **q** Affordable and "workforce housing" in short supply
 - q Urban sprawl
- n Multiple causes:
 - **q** Racial and ethnic residential segregation
 - q Housing discrimination
 - q Restrictive local policies

Concentrated Urban Poverty, While Declining, Remains a Barrier to Opportunity

- Decreases in poverty been relatively minor
- Likely spatial redistribution of poverty (Jargowsky 2003)

Dimensions of Housing and Community Development

- n Stakeholders
 - q Employers
 - q Housing developers
 - q Citizens
 - q Government agencies
- n Policy objectives
 - q Minimize social costs
 - Maximize deconcentration and reduction of poverty
- n Actions
 - G Create new housing alternatives
 - Protect current alternatives
 - Change attitudes and preferences

- n Place-based strategies
 - Housing development
 - q Economic development
 - q Public safety
 - Policy advocacy
- n Person-based strategies
 - Mobility
 - q Human services
 - ч Legal

Affordability and Sustainability are Central to Housing and Community Development

- Affordable housing enables families to devote income to meet many non-housing needs:
 - q Education
 - q Child care
 - q Employment
 - q Recreation
- n Sustainable communities ensure the long-term health of regions:
 - q Minimize adverse environmental impacts
 - q Maximize access to social resources
 - Period Enable all sectors to pay full prices for, and enjoy full benefits of, development decisions

What Do These Terms Mean?

- n Affordable housing:
 - Shelter whose expenses do not exceed 30 50% of a family's budget
 - q Policy emphasis on lower-income families (80% AMI and below)
 - Can be owner- and renter-occupied; includes governmentsubsidized housing ("public housing", "Section 8") as special cases
- n Community development:
 - Combination of investments in homes, businesses, infrastructure and human services that addresses:
 - n Reduction of poverty
 - n Increased access to social and economic opportunity
 - n Improved quality of built environment
 - q Multiple lenses (geography, race, class)
 - q Multiple names ("revitalization", "growth management")

Challenges and Opportunities in Policy Design and Implementation

- People may support the notion of affordable housing and sustainable community development, but...
 - People do not see affordable housing as a high priority
 - Preference for traditional detached single-family homes
 - q Regarded mostly as a local problem
- n Evidence on policy impacts is encouraging
 - Promising outcomes for housing mobility programs
 - Housing revitalization programs improve quality of assisted housing stock
 - G "Smart growth" emphasizes compact development and affordability for all
- n Federal leadership is limited
 - q Post-Katrina planning?
 - **Flat or declining funding on existing programs**
 - **G** Emphasis on reducing regulatory barriers to housing production

What is the Role of Decision Models?

- n Civil, industrial, environmental and mechanical engineering generate improved methods for implementing housing initiatives:
 - q Housing construction
 - q Physical infrastructure
 - **q** Transportation management
- In Urban and regional planning develop guidelines for physical development given current technologies:
 - Supply and demand for buildings and services
 - q Management of development process
 - q Consensus among stakeholders
- n Decision sciences link engineering and planning:
 - Generate actionable strategies that optimize multiple objectives
 - q Take as given best practices in engineering and/or planning
 - Generalize the notion of "facility location" and "service provision"

Overview

- Policy and research motivation
- n Engineering-based methods: housing construction
- In Urban and regional planning: affordable housing and community development
- n Decision science methods: policy design and decision support
- n Discussion and research extensions
- n Conclusion

Engineering-Based Methods: Framework for Sustainability

- n Focus on environmental impacts:
 - q Impact on greenhouse gas emissions
 - q Quality of air, water, and soil
 - q Noise, stench
 - q Impact on stock of nonrenewable materials
- **n** Flows determine the environmental impact of system:
 - q Energy, Material, Water flows
- n Impacts on behavior:
 - q "Rebound" effect
 - e Eco-unfriendly development in reaction to contradictory incentives
- n Recommendations:
 - **9** Better coordination between sectors
 - q International approach

(Priemus 2005)

Engineering-Based Methods: Energy Consumption

- Increased use of energy-conserving materials and systems (Steven Winter Associates, Inc. 2001):
 - q Windows, insulation and appliances
 - q Alternative energy sources
 - q Improved construction methods
 - q More efficient heating and air conditioning systems
 - q 26% 46% energy savings over Model Energy Code
- Improved building designs (Balcomb, Hancock and Barker 1999)
 - G Computer simulation methods compare actual and projected savings
 - Architectural choices: site selection, building orientation, compact floor plans
 - q 75% reduction in energy usage over model house and MEC

Engineering-Based Methods: Construction Processes

- Concurrent engineering improves use of customer requirements for industrialized housing (Armacost *et al.* 1994)
 - q Housing is increasingly "assembled" from pre-made components
 - Quality Function Deployment matches customer needs to supplier resources
 - Analytic Hierarchy Process is used to develop customer priorities
- Knowledge management increases coordination between owners, designers and developers (Ibrahim and Nissen 2003)
 - Key phases: Feasibility, Entitlements, Building Permit, Construction, Property Management
 - **Expertise in documents and memory hard to collect, analyze**
 - q Implement Knowledge Group Set using agent-based simulation

Overview

- Policy and research motivation
- n Engineering-based methods: housing construction
- In Urban and regional planning: affordable housing and community development
- n Decision science methods: policy design and decision support
- n Discussion and research extensions
- n Conclusion

Planning Methods: Housing Policy

- n Direct government subsidies:
 - q Project-based subsidies
 - n Public housing
 - n Developer-focused assistance programs
 - n Special-needs housing
 - q Tenant-based subsidies
 - n Rental subsidies
 - n Homeowner assistance programs
- n Indirect government subsidies:
 - ч Tax credits
 - q Community development block grants
 - q Housing trust funds
- n Policy tools:
 - q Planning and zoning tools
 - q Innovative design

(The Washington Area Housing Partnership 2005)

Planning Methods: Regional Opportunity Structure

- Segregation plays a fundamental role in U.S. metropolitan areas
 - g By race/ethnicity
 - ч By class
 - ч By housing type
- Opportunity arises through multiple life choices
 - q Housing
 - q Education
 - q Employment
- Improving access to opportunity is difficult and controversial...

(de Souza Briggs 2005)

Planning Methods: Current Trends

- n Evolution of Assisted Housing Policy (von Hoffman 1996, Quercia and Galster 1997)
 - Movement from centrally-planned public housing communities to partnerships and individual choice
 - Multiple conflicting objectives: integration, fiscal stability, opportunity, subsidies
- n Smart Growth (Pendall et al. 2005)
 - Traditional suburban development: large lots, new infrastructure, auto-based travel result in urban sprawl
 - Growth management: more local planning, limits on local impacts
 - Smart growth: address growth throughout the metropolitan area, urban design, and existing neighborhoods and resources
- n Spatial decision support (Ayeni 1997)
 - q Represent urban infrastructure using GIS, databases
 - Incorporate analytical models to study, understand, predict and plan urban development
 - **q** Document planning and development processes

Overview

- Policy and research motivation
- n Engineering-based methods: housing construction
- In Urban and regional planning: affordable housing and community development
- Decision science methods: policy design and decision support
- n Discussion and research extensions
- n Conclusion

Decision Science Methods for Affordable Housing Policy and Planning

- n Decision science models address:
 - g Space
 - q Opportunity
 - q Design
 - q Choice

n Decision science models provide a range of guidance:

- **Trade-offs between stylized policy alternatives (***strategic*)
- q Multi-objective analysis of specific strategies (tactical)
- Guidance regarding short-term processes (operational)
- n Challenges to use of decision models:
 - q Application-area theory may be weak or underdeveloped
 - Multi-stakeholder, multi-objective, data-intensive applications hard to implement in practice

Strategic Models

- n Long-term policy design problem: estimate impacts of stylized initiatives
- n Examples:
 - ^q Public housing redevelopment policy (Gleeson 1992)
 - Application of reliability model to compare benefits and costs of renovating public housing units to constructing new units
 - q Dynamic models for housing mobility (Caulkins et al. 2005)
 - n One-state optimal control model generates multiple trajectories of populations over time
 - ^q Policy simulation models (Johnson and Caulkins 2006)
 - n More realistic dynamic model without optimization allows steadystate analysis and transient analysis

Optimal Control Model: Components

- **n** State variable X(t):
 - Population of "middle-class" community at time t
- **n** Control variable u(t):
 - Flow per unit time of "low-income" families into middle-class community from housing mobility program
- n Middle-class neighborhood population dynamics:

q
$$\frac{dX}{dt} = a \cdot X(t) \cdot (1 - X(t))$$

- **n** Flight of middle-class families: $\beta \cdot u$
- **n** Assimilation of low-income families: $\gamma X \cdot u$
- n Benefit to low-income families: \$1 per participant
- **n** Benefit to middle-class families: $\rho \cdot X$
- n Societal costs: *c*·*u*²
- n Discount rate: r

Optimal Control Model: Formulation

Choose values for control variable u(t) to maximize

$$\int_{0}^{\infty} e^{-rt} \left(u(t) - cu(t)^{2} + rX(t) \right) dt$$

Subject to system dynamics

$$X = a \cdot X(t) \cdot (1 - X(t)) - b \cdot u(t) + g \cdot X(t) \cdot u(t)$$

and initial conditions

$$X(0) = X_{\text{start}}$$

Goals:

- q Identify equilibrium points (X, u) associated with steady state
- q Characterize state trajectories

Policy Simulation Model: State Transitions

- P: Residents of high-poverty inner central city neighborhood M: Poor residents in housing mobility program who
 - have relocated to "near" middle-class neighborhood
- N: Middle class residents of "near" neighborhood
- F: Middle-class residents of "far" neighborhood

Steady-State Results

- n Substantial decrease in concentrated urban poverty
- n Moderate decrease in total poverty
- n Moderate increase in poverty rate in destination communities
- "Flight" per mobility participant high, independent of program scale and indicative of significant sprawl-related social costs

Transient Analysis

- n Use discretetime approximation to system dynamics
- n Program intensity *u* = 10%
- n Convergence in < 20 years</p>

Tactical Models

- Medium-term policy design problem: design development programs for specific study areas
- n Examples:
 - q Land development (Gabriel *et al.* 2006)
 - Choose parcels for development to jointly optimize objectives of government planner, environmentalist, conservationist, land developer
 - n Consider land attributes relevant to "smart growth": zoning classifications, contiguity, compactness
 - Armed forces housing (Forgionne and Frager 1988)
 - Forecast demand for Army on-base and off-base housing, and allocate resources to secure housing
 - Affordable/subsidized housing location (Johnson 2000, 2001, 2003, 2006
 - n Allocate participants in mobility program across neighborhoods
 - Locate housing developments of different sizes and types across neighborhoods
 - n Spatial decision support for mobility program policy design

Affordable Housing Can be Classified along Multiple Dimensions

Urban Affordable Housing Development Planning is Complex and Time-Consuming

Affordable Housing Location Model withScale Effects

- n Objectives:
 - P Maximize net social impacts
 - q Minimize distributional inequity

n Decision variables:

- q Siting (x_{ij})
- ч Size (z_{ij})

addressing "small", "medium" and "large" projects

n Parameters:

- **G** Social benefit with scale effects (b_{ij})
- Fixed provision costs with scale effects (f_{ii})
- Breakpoints for piecewise-linear approximations (*I_j*)

Objective-Space Results, Minimax Equity Objective, Owner-Occupied Housing

n Negative net benefits result from limited data on program outcomes

Minimax Equity Objective Function Tradeoffs Influence Size and Spatial Distribution of Housing

Operational Problems

- Short-term policy design problem: provide direct services in specific study areas most efficiently
- n Approaches:
 - Managing housing authority waiting lists (Kaplan and Berman 1988)
 - Application of queueing theory to give priorities for certain families currently in public housing to move to newly-rehabilitated public housing
 - q Decision support for housing choice (Johnson 2005)
 - Spatial decision support system to enable housing voucher clients to improve quality of neighborhood and housing unit choices

Overview

- Policy and research motivation
- n Engineering-based methods: housing construction
- In Urban and regional planning: affordable housing and community development
- n Decision science methods: policy design and decision support
- **n** Discussion and research extensions
- n Conclusion

Discussion: Insights and Challenges

- Note: What do decision models tell us about theory and practice in housing and community development?
 - Housing mobility programs are more likely to deconcentrate poverty than to alleviate poverty, with potentially significant social and environmental costs
 - Affordable housing location models are more likely to provide strategy directions than specific policy prescriptions
 - Mobility support systems require significant investments and expertise to improve quality of client choice
- N What challenges must be met in putting decision models to work in real life?
 - Practitioners must move beyond "making the numbers work" to evaluating potential impacts and assessing tradeoffs
 - More favorable policy environment at all levels is essential to leveraging benefits of decision support models

Decision Modeling Extensions

- How can decision models address design and construction for buildings and communities jointly?
 - q Architecture, urban and regional planning, OR
- n How should urban neighborhoods be redeveloped in the wake of natural disasters?
 - ^q Environmental management, urban and regional planning, OR
- n How can affordable housing providers decide which parcels to acquire, and what development to pursue?
 - q Housing policy, geography, OR
- N What are the social benefits of decision models for housing and community development over the status quo?
 - q Housing policy, OR

Decision Modeling Extensions, cont'd

- n How can social networking and Internet technologies enable people to make and support choices that improve access to affordable housing and sustainable communities?
 - ^q Human-computer interaction, spatial decision support systems
- n How can simulations of housing mobility programs with intelligent actors clarify roles of individual choice, structural impediments to fair housing, public policy and social networks?
 - Agent-based simulation, social networks, housing policy

Overview

- Policy and research motivation
- n Engineering-based methods: housing construction
- In Urban and regional planning: affordable housing and community development
- n Decision science methods: policy design and decision support
- n Discussion and research extensions

n Conclusion

Conclusion

- Housing and community development are central to the economic and social health of the country, but not commonly viewed as amenable to prescriptive methods
- Decision sciences contribute to design of housing and community development policies that extend current methods of provision-oriented engineering and urban/regional planning
- n Housing policy must optimize social criteria, address technology aspects of housing provision and use best practices in planning to achieve affordability and sustainability
- Current research draws upon multiple technologies, academic disciplines and spatial/temporal scales to provide guidance to practitioners and policymakers

Questions?

Thank you very much!

Links to my publications and working papers are available at <u>http://www.andrew.cmu.edu/</u> <u>user/johnson2/index.htm</u>

- Three-bedroom homes offering
 - an inviting front porch,
 - •2 and 1/2 baths
 - attached garage

Act Quickly! Only 4 houses remain!

Features:

- · high efficiency heating and cooling
- high efficiency windows and doors
- high-efficiency insulation
- wall-to-wall carpeting
- vinyl flooring in kitchen baths
- generous room sizes
- stove and refrigerator
- lighting fixtureslandscaping

Local Amenities

- Woodland Hills School District
- Walk to the East Busway
- Close to The Waterfront
- Minutes from Route 376
- Close to Kennywood and Sandcastle
 - a project of The Rankin Partnership and Mon Valley Initiative

We'll Guide You Every Step of the Way

MVI's Housing Specialists and Financial Counselor will work with you to review your credit and prepare for the responsibilities of home ownership.

	Family Size	80% Annual Income
Guyers who meet income	10	\$31,000
guidelines can own this	2	\$35,450
	3	\$39,900
brand-new, o-bedroom house	4	\$44,300
for about \$550 a month	5	\$47,850
	6	\$51,400
(principal, interest, insurance & taxes)	7	\$54,950
	8	\$58,500

For Sales Information call Mon Valley Initiative at 412-464-4000

What is the Link to Supply Chain Management?

- Supply chain: network of facilities and transportation modes to transform inputs into finished goods and services
- Human services value chain: network of facilities, programs and services to improve individual life outcomes and neighborhood quality across a region
- n Common tasks:
 - ^q Measure, match supply and demand for goods and services
 - q Facility location

eCounselor: Client Preferences for Neighborhood Attributes

eCounselor: A Model of Housing Client Destination Choice

eCounselor: Client Component—Search Neighborhoods

References

- Caulkins, J.P., Feichtinger, G., Johnson, M.P., Tragler, G. and Y. Yegorov. 2005. Skiba Thresholds in a Model of Controlled Migration. *Journal of Economic Behavior and Organization* **57**(4): 490 508.
- de Souza Briggs, X. (Ed.) 2005. *The Geography of Opportunity: Race and Housing Choice in Metropolitan America.* Washington, D.C.: Brookings Institution Press.
- Gabriel, S.A., Faria, J.A. and G. E. Moglen. 2006. A Multiobjective Optimization Approach to Smart Growth in Land Development. *Socio-Economic Planning Sciences* **40**: 212 248.
- Gleeson, Michael E. 1992. Renovation of Public Housing: Suggestions from a Simple Model. *Management Science* **38**(5), 655 666.
- Ibrahim, R. and M. Nissen. 2003. "Emerging Technology to Model Dynamic Knowledge Creation and Flow among Construction Industry Stakeholders during the Critical Feasibility-Entitlements Phase." In (Ian Flood, Ed.) Information Technology 2003: Towards a Vision for Information Technology in Civil Engineering. Reston, VA: American Society of Civil Engineers.
- Jargowski, P.A. 2003. Stunning Progress, Hidden Problems: The Dramatic Decline of Concentrated Poverty in the 1990s. The Brookings Institution. Web: <u>http://www.brookings.edu/es/urban/publications/jargowskypoverty.pdf</u>.
- Johnson, M.P. 2006. Planning Models for Affordable Housing Development. To appear, *Environment and Planning B: Planning and Design*.
- Johnson, M.P. 2005. Spatial Decision Support for Assisted Housing Mobility Counseling. *Decision Support Systems* **41**(1): 296 312.
- Kaplan, E.H. 1986. Tenant Assignment Models. Operations Research 34(6): 832 843
- Metropolitan Washington Council of Governments. 2005. *Toolkit for Affordable Housing Development*. The Washington Area Housing Partnership. Web: <u>http://www.mwcog.org/store/item.asp?PUBLICATION_ID=254</u>.
- Myers, D. and E. Gearin. 2001. Current Preferences and Future Demand for Denser Residential Environments. *Housing Policy Debate* **12**(4): 633 – 659.
- NAACP and National Association of Home Builders. 2006. *Building on a Dream*. Web: <u>http://www.nahb.org/publication_details.aspx?publicationID=2858</u>.
- Steven Winter Associates, Inc. 2001. Building America Field Project: Results for the Consortium for Advanced Residential Buildings (CARB), January to October 2001. National Renewable Energy Laboratory, U.S. Department of Energy. World Wide Web: <u>http://www.nrel.gov/docs/fy03osti/31380.pdf</u>.
- U.S. Department of Housing and Urban Development. 2006. U.S. Housing Market Conditions: 2nd Quarter 2006. Office of Policy Development and Research. Web: <u>http://www.huduser.org/periodicals/ushmc/summer06/USHMC_Q206.pdf</u>.