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Abstract

Networked electronic devices have permeated business, government, recreation, and almost all

aspects of daily life. Coupled with the decreased cost of data storage and processing, this has led

to a proliferation of data about people, organizations, and their activities. This cheap and easy

access to information has enabled a wide variety of services, efficient business, and convenience

enjoyed by many. However, it has also resulted in privacy concerns. As many recent incidents

have shown, people can be fooled into providing sensitive data to identity thieves, stored data

can be lost or stolen, and even anonymized data can frequently be reidentified. In this paper,

we discuss privacy challenges, existing technological solutions, and promising directions for the

future.

1 Introduction

Changes in technology are causing an erosion of privacy. Historically, people lived in smaller

communities and there was little movement of people from one community to another. People

had very little privacy, but social mechanisms helped prevent abuse of information. As trans-

portation and communications technologies developed, people began to live in larger cities and

to have increased movement between communities. Many of the social mechanisms of smaller

communities were lost, but privacy was gained through anonymity and scale.

Now, advances in computing and communications technology are reducing privacy by making

it possible for people and organizations to store and process personal information, but social
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mechanisms to prevent the misuse of such information have not been replaced. While a major

issue in computing and communications technology used to be how to make information public,

we now have to work hard to keep it private.

The issue of “confidentiality”1, or protecting information in transit or in storage from an

authorized reader, is a well understood problem in computer science. That is, how does a sender

Alice send a message M to an intended receiver Bob in such a way that Bob learns M but an

eavesdropper Eve does not, perhaps even if Eve is an active attacker who has some control over

the communication network? Although some difficulties remain in practical key management

and end-host protection, for the most part, this problem is quite well solved by the use of

encryption.

In contrast, a modern view of “privacy” is not simply about Eve not learning the message

M or anything about its contents, but includes other issues such as Eve learning whether a

message was sent between Alice and Bob at all, and questions about what Bob will and will not

do with M after he learns it. This view of privacy in the electronic setting was first introduced

in the early 1980’s by David Chaum [1, 2, 3]. A growing interest in privacy in the computer

science research community can be seen by the large number of annual conferences, workshops,

and journals now devoted to the topic (e.g., [4, 8, 16, 14]).

Considered in isolation, it is easy to describe how to achieve privacy: one can live in isolation,

avoid any use of computers and telephones, pay cash for all purchases, and travel on foot.

Obviously, this is not realistic or even desirable for the vast majority of people. The difficulty

of privacy arises because of the apparent conflict between utility and privacy—that is, desire

of various parties to benefit from the convenience and other advantages provided by use of

information, while allowing people to retain some control over “their” information, or at the

very least to be aware of what is happening to their information.

The problem is further complicated by the fact that privacy means different things to different

people. What some people consider a privacy violation is considered completely innocuous by

other people. Or what seems a privacy violation in one context may not seem to be one in

another context. For this reason, privacy is not a purely technological issue and cannot have

purely technological solutions. Rather, social, philosophical, legal, and public policy issues

are also important. However, technology can enable new policy decisions to be possible by

instantiating solutions with particular properties.

Given the pervasive nature of networked computing, privacy issues arise in a large number

1One should note that the terminology distinction of “confidentiality” and “privacy” is not thoroughly standard-

ized, and some people use the term “confidentiality” in the way the term “privacy” is used in this paper.
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of settings. These include:

• Electronic health records. In the United States, there is a large effort to move to-

wards electronic health records in order to improve medical outcomes as well as reduce

the exorbitant cost of healthcare. Unless solutions can be developed that allow medical

practitioners access to the right personal health information at the right time and in the

right circumstances, while also ensuring that it cannot be accessed otherwise or used in-

appropriately even by those who have legitimate access, privacy will remain a barrier to

adoption.

• Government surveillance. In the interest of protecting national security and preventing

crime, governments often wish to engage in surveillance activities and link together huge

amounts of data in order to identify potential threats before they occur and learn more

about incidents and their perpetrators if they occur. Most people want increased security,

but many remain concerned about invasion of privacy.

• Commerce and finance. Consumers have eagerly adopted on-line commerce and bank-

ing because of the great convenience of being able to carry out transactions from home

or anywhere else. However, due to the use of personal information such as social security

numbers and mother’s maiden name being used for authentication coupled with the ease

with which this kind of personal can be learned, this has resulted in a huge increase in

identity theft. It also allows companies (particularly when data from multiple sources is

aggregated by data aggregators) to gain great insight into customers and potential cus-

tomers, often to the point leaves these customers feeling unsettled.

• Pervasive wireless sensors. Sensors such as RFID tags (inexpensive, tiny, chips that

broadcast a unique 96-bit serial number when queried and are used in mobile payment

applications such as EZPass and Exxon Mobil’s Speedpass as well as increasingly embedded

in consumer products (or even in consumers themselves in some cases)), mobile telephones

and other personal devices that broadcast recognizable identification information, and GPS

transmitters such as used in popular car navigation systems. These devices can potentially

be used to track individuals’ locations and interactions.

There are a large number of different kinds of solutions to various privacy problems, with

different kinds of properties. Some aspects in which solutions differ is whether they are trans-

parent (users cannot even tell they are there, but they protect privacy in some way anyway)

or visible (users can easily tell they are there and can, or even must, interact with the system

while carrying out their tasks); individual-user (in which an individual can unilaterally make a
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choice to obtain more privacy, say by using a particular software package or configuring it in a

certain way) or infrastucture (in which some shared infrastructure, such as the Internet itself,

is modified or redesigned in order to provide more privacy); focused only notification (e.g., al-

lowing or requiring entities to describe their data practices) or also on compliance; and in other

ways. However, unless a solution primarily favors utility and functionality over privacy when

choices must be made, it will tend not to be widely adopted. I describe one kind of solution,

privacy-preserving data mining, in further detail in the following section.

2 Privacy-Preserving Data Mining

Sophisticated use of cryptography can yield solutions with unintuitive properties. The elegant

and powerful paradigm of general secure multiparty computation [7, 19] shows how cryptography

can be used to allow multiple parties each holding a private input to engage in a computation on

their collective inputs in such a way that they all learn the result of the computation but nothing

else about each other’s data; further, this is achievable with computation and communication

overhead that is reasonable when described as a function of the size of the private inputs and

the complexity of the non-private computation.

Because the inputs to data mining algorithms are typically huge, the overheads of the gen-

eral secure multiparty computation solutions are intolerable for most applications. Instead, re-

search in this area seeks more efficient solutions for specific computations. Most cryptographic

privacy-preserving data mining solutions to date address typical data mining algorithms, such

as clustering [15, 9], decision trees [12], or Bayesian networks [13, 17]. Recent work addresses

privacy preservation during the preprocessing step [10] and the postprocessing step [18], thereby

working towards maintaining privacy throughout the data mining process.

Cryptographic techniques provide the tools to protect data privacy by exactly allowing the

desired information to be shared while concealing everything else about the data. To illustrate

how to use cryptographic techniques to design privacy-preserving solutions to enable mining

across distributed parties, we describe a privacy-preserving solution for a particular data mining

task: learning Bayesian networks on a dataset divided among two parties who want to carry

out data mining algorithms on their joint data without sharing their data directly.

2.1 Bayesian networks

A Bayesian network (BN) is a graphical model that encodes probabilistic relationships among

variables of interest [5]. This model can be used for data analysis and is widely used in data
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mining applications.

Formally, a Bayesian network for a set V of m variables is a pair (Bs, Bp). The network

structure Bs = (V, E) is a directed acyclic graph whose nodes are the set of variables. The

parameters Bp describe local probability distributions associated with each variable. There

are two important issues in using Bayesian networks: (a) Learning Bayesian networks and

(b) Bayesian inferences. Learning Bayesian networks includes learning the structure and the

corresponding parameters. Bayesian networks can be constructed by expert knowledge, or from

a set of data, or by combining those two methods together. Here, we address the problem of

privacy-preserving learning of Bayesian networks from a database vertically partitioned between

two parties; in vertically partitioned data, one party holds some of the variables and the other

party holds the remaining variables.

2.2 The BN Learning Protocol

A value x is secret shared (or simply shared) between two parties if the parties have values

(shares) such that neither party knows (anything about) x, but given both parties’ shares of x,

it is easy to compute x. Our protocol for BN learning uses composition of privacy-preserving

subprotocols in which all intermediate outputs from one subprotocol that are inputs to the next

subprotocol are computed as secret shares. In this way, it can be shown that if each subprotocol

is privacy-preserving, then the resulting composition is also privacy-preserving.

Our solution is a modified version of the well known K2 protocol of Cooper and Herskovitz [5].

That protocol uses a score function to determine which edges to add to the network. To

modify the protocol to be privacy-preserving, we seek to divide the problem into several smaller

subproblems that we know how to solve in a privacy-preserving way. Specifically, noting that

only the relative score values are important, we use a new score function g that approximates

the relative order of the original score function. This is obtained by taking the logarithm of the

original score function and dropping some lower order terms.

As a result, we are able to perform the necessary computations in a privacy-preserving way.

We make use of several cryptographic subprotocols, including secure two-party computation

(such as the solution of [19], which we apply only on a small number of values, not on something

the size of the original database), a privacy-preserving scalar product share protocol (such as

the solutions described by [6]), and a privacy-preserving protocol for computing x lnx (such

as [12]). In turn, we show how to use these to compute shares of the parameters αijk and αij

that are required by the protocol.

Our overall protocol of learning BNs is described as follows. In keeping with cryptographic
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tradition, we call the two parties engaged in the protocol Alice and Bob.

Input: An ordered set of m nodes, an upper bound u on the number of parents for a node,

both known to Alice and Bob, and a database D containing n records, vertically partitioned

between Alice and Bob.

Output: Bayesian network structure Bs (whose nodes are the m input nodes, and whose

edges are as defined by the values of πi at the end of the protocol)

As the ordering of variables in V , Alice and Bob execute the following steps at each node vi.

Initially, each node has no parent. After Alice and Bob run the following steps at each node,

each node has πi as its current set of parents.

1. Alice and Bob execute privacy-preserving approximate score protocol to compute the secret

shares of g(i, πi) and g(i, πi ∪ {z}) for any possible additional parent z of vi.

2. Alice and Bob execute privacy-preserving score comparison protocol to compute which of

those scores in Step 1 is maximum.

3. If g(i, πi) is maximum, Alice and Bob go to the next node vi+1 to run from Step 1 until

Step 3. If one z generates the maximum score in Step 2, then z is added as the parent of

vi such that πi = πi ∪ {z} and Alice and Bob go back to Step 1 on the same node vi.

4. Alice and Bob run a secure two-party computation to compute the desired parameter

αijk/αij .

Further details about this protocol can be found in [17], where we also show how a privacy-

preserving protocol to compute the parameters Bp. Experimental results addressing both the

efficiency and the accuracy of the structure-learning protocol can be found in [11].

3 Challenges for the Future

Many challenges remain regarding privacy, both technical and political. These include social and

political questions regarding who should have the right and/or responsibility to make various

privacy-related decisions about data pertaining to an individual, as well as continued devel-

opment and deployment of technologies to enable these rights and enforce that such privacy

decisions, once made by the appropriate parties, are respected.

6



References

[1] David Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms.

Communications of the ACM, 24(2):84–88, 1981.

[2] David Chaum. Security without identification: Transaction systems to make big brother

obsolete. Communications of the ACM, 28(10):1030–1044, 1985.

[3] David Chaum. Achieving electronic privacy. Scientific American, pages 96–101, August

1992.

[4] Conference on Computers, Freedom, and Privacy. Proceedings. Yearly since 1991.

[5] Greg F. Cooper and Edward Herskovits. A Bayesian method for the induction of proba-

bilistic networks from data. Mach. Learn., 9(4):309–347, 1992.

[6] Bart Goethals, Sven Laur, Helger Lipmaa, and Taneli Mielikäinen. On private scalar
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