
Unifying Disparate Tools in Software Security

Greg Morrisett
Harvard University

How can you trust software? In particular, when you install a piece of code, such

as a video game or a device driver for a new camera, how can you ensure that the code

won’t do something bad when executed, such as deleting all of your files or installing a

key-stroke logger that captures your passwords? How can you ensure that the software

doesn’t contain coding bugs or logic errors that might leave a security hole?

Traditional approaches to software security have assumed that users could easily

determine when they were installing code, and whether or not software was trustworthy

for a particular context. This assumption was reasonable when computers controlled few

things of real value, when only a small number of people (typically experts) installed

software, and the software itself was relatively small and simple. But the security

landscape has been drastically altered by technology advances, such as the explosive

growth of the Internet, the increasing size and complexity of software, and new business

practices, such as out-sourcing and open source development. Furthermore, as we grow

more reliant on software to control critical systems, from phone systems and airplanes to

banks and armies, we desperately need new mechanisms to ensure software is truly

trustworthy.

The Attacker

 Today, malicious hackers have a serious financial incentive to break into

and control your personal and business computers. If they can break into your machine,

then they can gather personal information, such as passwords, credit cards, and social

security numbers and use this information to clean out bank accounts, apply for credit in

your name, or gain access to other machines on the same network. Furthermore, if

attackers can break into and control machines, then they can use them to send “spam”

(unsolicited email advertisements), to store illicit digital goods (e.g., pirated music or

pornography), and to launch denial-of-service attacks against other computing systems.

One technique that an attacker can use to gain a foothold on a machine is to trick

the user into thinking a piece of code is trustworthy. For example, an attacker may send

an email that contains a malicious program, but with a forged return address from

someone the user trusts. Alternatively, they may set up a web site with a name that

appears to be trustworthy, such as “www.micr0s0ft.com” (where the letter “o” is replaced

with the numeral “0”) and send an email with a link to the sight, suggesting that the user

needs to download and install a new security update.

Even sophisticated users can be fooled: A clever attacker might contribute

“Trojan Horse” code to a popular open source project, making an otherwise useful

program (e.g., a compiler [cite Thompson lecture]) into undetected mal-ware. In short, it

is relatively easy for an attacker to gain the trust of a user and get them to install code.

Today, we use a combination of digital signatures and virus scanners to try to stop

these attacks. But digital signatures only tell us who produced the code, not whether it is

trustworthy. Because virus scanners operate at the syntactic level, looking for snippets of

previously identified mal-ware, they are easily defeated through automated obfuscation

techniques. And of course, such scanners will never detect new attacks.

http://www.micr0s0ft.com

What we have today are relatively weak tools that tell us something about the

provenance of the software, and its syntax, when what we require is a tool to validate the

software’s semantics.

Even Good Guys Can’t Be Trusted

A second technique attackers use to gain control of a machine is to find a bug in

an already installed program that communicates with the outside world. The classic

example is a buffer overrun in some service, such as a login daemon, or some network-

based application, such as a web-browser. A buffer overrun occurs when a program

allocates n bytes of memory to hold an input (e.g., a password), but the attacker provides

more than n bytes. A properly written program will check and reject any input that is too

long. Unfortunately, many programmers fail to insert appropriate checks, in part because

commonly used programming languages (C and C++) make it easy to forget those

checks, and in part because programmers often think, “no one will have a password of

more than a thousand characters.”

When programmers fail to put in the check and the input is too long, the extra

bytes overwrite whatever data happened to be stored next to the input buffer. In many

situations, the buffer is allocated on the control stack near a return address for a

procedure---a location where the program will transfer control after the input routine is

complete. A clever attacker will enter an input long enough to overwrite the return

address with a new value, thereby controlling what code will be executed when the input

routine finishes. In the ideal attack, the rest of the input contains executable instructions

and the attacker causes control to transfer to this newly injected code. In this fashion, the

attacker can cause the program to execute arbitrary code.1

Attacks based on buffer overruns are surprisingly prevalent, and at one point,

accounted for over half of the security vulnerabilities reported by the Computer

Emergency Response Team [cite CERT statistics]. But the failure to check input lengths

is only one of a large number of coding errors that attackers can use to gain a foothold on

a machine or extract private information. Other examples include integer overflows,

format string attacks, script injection attacks, race conditions, use of bad pseudo-random

number generators, and improper use of cryptographic primitives.

Thus, even well meaning software vendors cannot seem to produce trustworthy

code. Part of the problem is that to sell new versions of the software, a vendor must

produce new features, which simply adds complexity to the code base. Part of the

problem is that current development practices, including design, coding, review, and

testing are not adequate to rule out simple errors, such as buffer overruns, much less

deeper problems such as the inappropriate use of cryptographic primitives or covert

information channels.

Preventing Bugs through Rewriting

One approach to defending against attacks is to build tools that automatically

insert checks at program locations where a policy violation might occur. For example,

we might insert extra code at each buffer update to ensure that we do not write beyond its

bounds.

1 For a more detailed explanation of these attacks, see
http://www.phrack.org/archives/49/P49-14

http://www.phrack.org/archives/49/P49-14

Compilers for high-level, type-safe languages, such as Java and C#, already insert

checks to ensure that a wide class of language-level errors, including buffer overruns, are

prevented. Unfortunately, the vast majority of systems and application software,

including security-critical operating systems code, is still written in C or C++ where the

compiler does not have enough information to insert appropriate checks. It is simply too

expensive to rewrite the millions of lines of code that make up big software systems (e.g.,

Windows or Oracle) in a high-level language, and doing so is likely to introduce as many

bugs as it eliminates. Furthermore, certain services, such as device drivers and real-time

embedded software, need control over memory layout and timing, and are thus not suited

to high-level languages.

Some effective tools for rewriting low-level legacy code have started to emerge.

For example, the StackGuard tool [Cow98] and the Microsoft “/gs” compiler option,

rewrite C/C++ code to insert a secret “cookie” next to buffers allocated on the control-

flow stack, and to check that the cookie has been preserved when a procedure is about to

jump to a return address. In this fashion, a buffer overrun can often be detected and

stopped with relatively low overhead. Unfortunately, the approach does not protect

against other forms of attack, such as overflowing a buffer allocated on the heap.

Another example of automated rewriting is the Ccured compiler [Nec02]. Ccured

provides a strong type-safety guarantee by inserting extra meta-data and run-time checks

into C code. The meta-data makes it possible to determine for instance, the size of a

buffer at run-time, and the checks ensure that all buffer boundaries and typing constraints

are satisfied. Compared to StackGuard, the overheads for Ccured can be greater, but the

security guarantees are much stronger. However, StackGuard can be applied to almost

any C program without change, whereas Ccured requires a number of changes to the

source code. In practice, a tool that is easily used gets used first.

There are many other tools that try to enforce security policies on legacy code

through rewriting, including software-based fault isolation [Wah93,Mcc06], control-flow

isolation [Abd05], and in-lined reference monitors [Sch00], among others. Each of these

tools strikes a different balance with respect to the expressiveness of the policies that can

be enforced, the code base to which the techniques are applicable, and the run-time

overheads introduced.

Preventing Bugs through Static Analysis

Security-conscious companies are starting to use better tools that either prevent or

detect a wide-class of coding errors at compile time. For example, Microsoft uses a static

analysis tool called Prefast (based on an early tool called Prefix [Bus00]) that scans C and

C++ code, looking for common errors such as buffer overruns. Companies such as

Fortify and Coverity produce similar tools that can analyze software written in a variety

of languages, and that support customizable rule-sets for finding new classes of bugs as

they arise.

To a first approximation, a static analysis tool attempts to symbolically execute all

paths in the code, looking for potential bugs. Of course, a program with n conditional

statements can have 2n distinct paths, and a program with loops or recursion can have an

unbounded number of paths, making this naïve approach infeasible. Furthermore, the

analysis does not know the actual values of inputs to the program, so it cannot always

determine the values of variables or data structures.

Consequently, these tools construct models of the program that abstract details,

and reduce the domains of reasoning to something finite. For example, instead of

tracking the actual values integer variables might take on, an analysis might only track

upper and lower bounds. To ensure termination, the analysis might only consider a few

iterations of a loop. More sophisticated techniques, based on abstract interpretation [cite

abstract interpretation] make it possible to determine an approximation of the behavior

for all iterations.

Though automated static analysis has made tremendous strides, especially in the

past few years, it still suffers from a number of problems. One problem, introduced by

the necessary approximation, is that we may indicate a potential error where there is none

(i.e., a false positive), or may fail to report an error (i.e., a false negative). If the

approximations are constructed so that the analysis is sound (i.e., no false negatives), then

unfortunately, programmers tend to be flooded with false positives, making it difficult to

find and fix the real bugs in the program. Therefore, today, few of these analyses are

sound and thus there is the potential that a bug will sneak through. For example, a

recently-found buffer overrun in the Windows Vista custom cursor animation code went

undetected by Prefast.

Looking to the Future:

One problem with static analysis tools is that, like an optimizing compiler, they

tend to be large, complicated programs. Thus, a bug in the analysis can mean that a

security-relevant error goes undetected. Furthermore, most tools operate on source code

(or bytecode) and thus the tool must make assumptions about how the compiler will

translate the program to machine code. Consequently, an inconsistent assumption or a

bug in the compiler can result in a security hole.

An ideal static analysis would:

• operate at the machine-code level (to avoid having to reason about

the compiler),

• be small, simple, and ideally, formally verified,

• be sound (i.e., not let bugs go un-reported), and

• be complete (i.e., not suggest code has bugs when it does not).

Although these goals seem unattainable, the proof-carrying code (PCC)

architecture, suggested by Necula and Lee [Nec97], comes remarkably close to satisfying

them.

The idea behind PCC is to require that executable programs come equipped with a

formal, machine-checkable “proof” that the code does not have bugs. By “proof”, we

mean a formal, logical argument that the code, when executed, will not violate a pre-

specified (and formalized) policy on behavior. The key insight is that constructing a

proof is hard (generally undecidable), but verifying a proof is easy. After all, a proof is

meant to be mechanically checkable evidence. Furthermore, assuming we have a sound

and relatively complete logic for reasoning about program behavior, we can, in principle,

accept precisely those programs that are provably safe.

The really nice thing about PCC is that as a framework, it is applicable to the user,

who is worried about whether or not it is safe to install a program downloaded from the

Internet, as well as the software producer, who has out-sourced development of modules.

No longer are we dependent on who produced the code, but rather what the code will

actually do.

In practice, the problem with PCC is that someone, namely the code producer,

still has to come up with the proof that the code satisfies a given policy. Thus, none of

the hard problems really go away. We still must use other techniques, such as static

analysis and rewriting, to find an effective way to construct the proof. What changes is

that we no longer need to trust the tools or compiler. In this fashion, PCC helps to

minimize the size of the trusted computing base.

One way to construct a proof that machine code satisfies a policy is through the

use of a proof-preserving compiler. In particular, if we start with source code and a

proof that the source satisfies a policy, then a proof-preserving compiler can

simultaneously transform the code and proof to the machine-code level. Type-preserving

compilers [Nec98,Mor99,Col00] are a particular instance of this framework, where the

policy is restricted to a form of type-safety.

Next-generation programming languages are incorporating increasingly

sophisticated type systems that allow programmers to capture stronger safety and security

properties through automated type checking. For example, the Jif dialect of Java lets

programmers specify secrecy requirements on data, and the type system ensures that

secret inputs (i.e., private fields) cannot flow to public outputs [Mye99]. Thus, when

combined with a type-preserving compiler, the Jif type system makes it possible for a

third party to verify that a program will not disclose information that is intended to be

private.

At an extreme, it is possible to capture arbitrary policies with a dependent type

system, as found in emerging languages such as ATS [Xi03], Concoqtion [Fog07],

Epigram [McB04], and HTT [Nan06]. These languages make it possible to specify

everything from simple typing properties up to full correctness. The price, of course, is

that type checking is only semi-automatic. Simple properties can be discharged using a

combination of static analysis, constraint solving, and automated theorem proving, but

ultimately, programmers are required to construct explicit proofs for deeper properties.

To a large degree, the success of these languages will be determined by how much can

truly be automated. Nevertheless, for safety and security-critical software systems, these

languages, in conjunction with proof-preserving compilers and the proof-carrying code

architecture provide a compelling research vision.

References

[Abd05] Martin Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. Control-

Flow Integrity: Principles, Implementations, and Applications. In Proceedings of the 12th

ACM Conference on Computer and Communications Security (CCS'05), Alexandria, VA,

November 2005.

[Bus00] William Bush and Jonathan Pincus and David Sielaff. A Static Analyzer

for Finding Dynamic Programming Errors. Software – Practice and Experience

30(7):775-802, June 2000.

[Col00] Christopher Colby, Peter Lee, George C. Necula, Fred Blau, Ken Cline,

Mark Plesko. A Certifying Compiler for Java. In Proceedings of the 2000 ACM

SIGPLAN Conference on Programming Language Design and Implementation,

Vancouver, British Columbia, Canada, June 2000.

[Cou77] Patrick Cousot and Radhia Cousot. Abstract interpretation: a unified

lattice model for static analysis of programs by construction or approximation of

fixpoints.

In Proceedings of the Symposium on Principles of Programming Languages,

pages 238--252, Los Angeles, California, January 1977.

[Cow98] Crispin Cowan, Calton Pu, Dave Maier, Heather Hinton, Jonathan

Walpole, Peat Bakke, Steve Beattie, Aaron Grier, Perry Wagle, and Qian Zhang.

StackGuard: Automatic Adaptive Detection and Prevention of Buffer-Overflow Attacks.

In Proceedings of the 7th Usenix Security Symposium, San Antonio, Texas, January

1998.

[Fog07] Seth Fogarty, Emir Pasalic, Jeremy Siek, and Walid Taha. Concoqtion:

indexed types now! In Proceedings of the 2007 ACM SIGPLAN Workshop on Partial

Evaluation and Semantics-based Program Manipulation, pages 112-121, Nice, France,

January 2007.

[McB04] Connor McBride. Practical Programming with Dependent Types. In

Varmo Vene, Tarmo Uustalu (Eds.): Advanced Functional Programming, 5th

International School, AFP 2004, Tartu, Estonia, August 14-21, 2004, Revised Lectures.

pages 130-170, Published as Lecture Notes in Computer Science 3622 Springer 2005,

ISBN 3-540-28540-7.

[McC06] Stephen McCamant and Greg Morrisett. Evaluating SFI for a CISC

Architecture. In Proceedings of the 15th Usenix Security Symposium, Vancouver, British

Columbia, August 2006.

[Mor99] Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From

System F to Typed Assembly Language. ACM Transactions on Programming

Languages and Systems, 21(3):527-568, 1999.

[Mye99] Andrew C. Myers. Practical Mostly-Static Information Flow Control.

Proceedings of the ACM Symposium on Principles of Programming Languages, pages

228-241, San Antonio, Texas, January 1999.

[Nan06] Aleksander Nanevski, Greg Morrisett, and Lars Birkedal. Polymorphism

and Separation in Hoare Type Theory. In Proceedings of the ACM International

Conference on Functional Programming, pages 62-73, Portland, Oregon, September

2006.

[Nec97] George C. Necula. Proof-Carrying Code . In Proceedings of the ACM

International Symposium on Principles of Programming Languages, Paris, France,

January 1997

[Nec98] George C. Necula and Peter Lee. The Design and Implementation of a

Certifying Compiler. In Proceedings of the ACM Conference on Programming Language

Design and Implementation, Montreal, Canada, 1998.

[Nec02] George C. Necula, Scott McPeak, Westley Weimer. CCured: Type-Safe

Retrofitting of Legacy Code. In Proceedings of the ACM Symposium on Principles of

Programming Languages, London, January 2002.

[Sch00] Fred B. Schneider. Enforceable Security Policies. In ACM Transactions

on Information Systems Security, 3(1), p. 30--50, 2000.

[Wah93] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L.

Graham. Software-Based Fault Isolation. ACM SIGOPS Operating Systems Review,

27(5):203-216, 1993.

[Xi03] Hongwei Xi, Applied Type Systems (extended abstract), in TYPES’03,

pages 394-408, Published as Lecture Notes in Computer Science 3085, Springer-Verlag,

2004.

