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The role of the Air Force Research Laboratory (AFRL), like the other service 

laboratories, is to conduct the basic and applied research and advanced technology development 

necessary to create new future technology options for the Department of Defense.  At the 

Warfighter Readiness Research Division of AFRL’s Human Effectiveness Directorate we have 

initiated a research program focused on mathematical and computational cognitive process 

modeling for replicating, understanding, and predicting human performance and learning.  This 

research will lead to new technology options in the form of human-level synthetic teammates, 

cognitive readiness analysis tools, and predictive and prescriptive knowledge tracing algorithms.  

Creating a future in which these objectives become realities requires tightly-coupled, multi-

disciplinary, collaborative interaction among scientists and engineers dedicated to overcoming 

the myriad challenges standing between current reality and our future vision.  

 

Barriers and Bridges 

There are many barriers to progress in cognitive science in general and to computational 

cognitive process modeling in particular.  I will emphasize just two of them here.  The first is a 

domain barrier.  There exists an infinite variety of domains in which humans learn and perform 

and in order to simulate human performance and learning in a particular domain we must provide 

relevant domain knowledge to the simulated human.  Transfer from one domain to the next is 

largely a function of the degree to which the knowledge in the two domains overlaps.  The 

reason this is problematic for scientific progress is that the domains typically used to study 



human cognitive functioning in the laboratory are very different than the domains of application 

in the real world.  Laboratory domains are mostly simple, abstract, and of short duration, 

whereas real world application domains are complex, situated, and of long duration.  Thus, in the 

field of cognitive science we must look for ways to build bridges between laboratory and applied 

contexts. 

The other barrier I will emphasize here is a disciplinary barrier.  Cognitive science is a 

field of study comprised of seven sub-disciplines: anthropology, artificial intelligence, education, 

linguistics, neuroscience, philosophy, and psychology.  These sub-disciplines involve very 

different methods, frameworks, and theories, and it is challenging to make progress at 

disciplinary intersections.  For instance, there is a powerful zeitgeist currently associated with 

neuroscience-based explanations of phenomena in various fields ranging from the more obvious, 

such as psychology (leading to the creation of a field known as neuropsychology) to the less 

obvious, such as economics (leading to the creation of a field known as neuroeconomics).  This 

has led some to begin speculating that there ought to be ways to improve the readiness of our 

military personnel by capitalizing on the tools, methods, empirical results and theories of 

neuroscience.  Simultaneously, there is interest in bringing together the sub-disciplines of 

anthropology, artificial intelligence, and psychology in order to better understand and prepare for 

multi-cultural interaction.  Making scientific progress across these disciplinary boundaries 

requires that we build bridges among the neural, cognitive, and social bands of human 

experience (Newell, 1990).  Anderson and Gluck (2000) noted that the same challenge exists in 

connecting neuroscience and educational practice and proposed that cognitive architectures are 

an appropriate formalism for building such bridges.  I propose that cognitive architectures also 



are an appropriate formalism for building bridges from neuroscience to the military’s cognitive 

readiness applications, via cognitive phenomena and models.   

 

The Solution: Cognitive Architectures 

The purpose of all scientific disciplines is to identify invariant features and explanatory 

mechanisms for the purpose of understanding the phenomena of interest in the respective 

disciplines.  Within the cognitive science community there is an approximately 50-year history 

of empirical research that involves using carefully constructed (usually simple and abstract) 

laboratory tests to isolate components of the human cognitive system in order to model and 

understand them.  Sometimes optimistically referred to as “divide and conquer,” this approach 

has led to comprehensive empirical documentation and sophisticated theories of hundreds of 

phenomena (e.g., fan effect, framing effect, Stroop effect) and functional components (e.g., 

attention, perception, memory, cognition, motor movement).  A subset of the cognitive science 

community have become concerned that this divide and conquer approach is not leading to a 

unified understanding of human cognitive functioning, and have proposed cognitive architectures 

as the solution to that problem.  Thus, cognitive architectures are intended to serve an integrative, 

cumulative role within the cognitive science community.  They are where the fractionated 

theories come together in a unifying account not only of the computational functionality of the 

component processes, but also of the architectural control structures that define the relationships 

among those components, and of the representation of knowledge content that is used by 

cognition. Gray (2007) explains how these three theoretical spaces (components, control 

structures, and knowledge) interact and provides numerous case studies of each.  Ultimately, it is 

at the intersection of these theories that cognitive architectures exist.   



 

Ongoing Cognitive Modeling Research 

Our cognitive modeling research program at the Air Force Research Laboratory’s Mesa 

Research Site is organized around a set of methodological strategies with associated benefits.  

First, we are using and improving on the ACT-R (Anderson et al., 2004) cognitive architecture 

because it provides a priori theoretical constraints on the models we develop, facilitates model 

re-use among members of the ACT-R research community, and serves the integrating, unifying 

role described earlier.  Second, we use the architecture, or equations and algorithms inspired by 

it, to make quantitative predictions in order to facilitate eventual transition to applications that 

make accurate, precise predictions about human performance and learning.  Third, we develop 

models in both abstract, simplified laboratory tasks and in more realistic, complex synthetic task 

environments in order to begin constructing those bridges between the laboratory and the real 

world.  Lastly, we compare the predictions of our models to human subjects data, in order to 

evaluate the necessity and sufficiency of the computational mechanisms and parameters that are 

driving those predictions and in order to evaluate the validity of the models.  We are pursuing 

this research strategy in several lines of research, which I briefly describe next. 

Knowledge Tracing.  This is our only research line that is entirely mathematical modeling 

and does not involve a computational modeling component.  The current approach is an 

extension and (we think) improvement to the General Performance Equation proposed by 

Anderson & Schunn (2000); thus, it derives from the computational implementation of learning 

and forgetting processes in ACT-R.  The new equation allows us to make performance 

predictions or prescribe the timing and frequency of training, both of which will enable tailored 



training experiences at individual and team levels of analysis (Jastrzembski, Gluck, & 

Gunzelmann, 2006). 

Communication.  One of the barriers standing between us and human-level synthetic 

teammates is that we don’t have a valid computational implementation of natural language – 

verbal or otherwise.  This is critical because good teammates adapt their communications in 

order to facilitate accomplishing the shared mission.  Our research in natural language modeling 

involves extending the Double R computational cognitive linguistic theory to knowledge-rich, 

time-pressured, team performance environments similar to those encountered in real-world 

situations, such as unmanned air vehicle reconnaissance missions (Ball, Heiberg, & Silber, 

2007). 

Spatial Competence.  Spatial cognition has long been a sub-specialization within the 

cognitive science community, but typically individual scientists or research groups adopt 

particular phenomena to study without worrying about how the pieces of the spatial cognitive 

system come back together to create a more general competence.  Reflecting this state of affairs, 

it turns out there is no comprehensive theory of the mechanisms and processes that allow for 

spatial competence.  Our research in this area is pushing the field and the ACT-R architecture in 

the direction of a neurofunctional and architectural view of how spatial competence is realized in 

the brain and the mind (Gunzelmann & Lyon, 2006).  

Fatigue.  There is a rich history of sleep-related fatigue research conducted in and 

sponsored by the military laboratories.  We are adding a new twist to that tradition by 

implementing new architectural mechanisms and processes that allow us to replicate the effects 

of sleepiness on the cognitive system.  The process models are then combined with 

biomathematical models of the circadian and sleep homeostat systems to create the capacity to 



predict what the precise effects of sleep deprivation or long-term sleep restriction will be in a 

given performance context (Gunzelmann, Gluck, Kershner, Van Dongen, & Dinges, 2007). 

High Performance and Volunteer Computing.  As our cognitive modeling research 

expanded in breadth and depth and our scientific and technical objectives grew more ambitious 

we began to exceed the capacity of our local computing resources.  In the search first for more 

resources and subsequently for more intelligent and efficient use of available resources, we have 

begun to use both high performance computing and volunteer computing as platforms for 

processor horsepower.  We have demonstrated that such platforms can indeed be used 

productively for faster progress in cognitive modeling (Gluck, Scheutz, Gunzelmann, Harris, & 

Kershner, 2007) and are investing in additional software improvements for facilitating the use of 

these resources. 

 

An Important Direction for the Research Community 

Finally, I close by mentioning an important research direction for the cognitive modeling 

community: overcoming the knowledge engineering bottleneck.  The key here is not the 

development of tools for doing manual knowledge engineering more efficiently, although that is 

a perfectly fine idea in the interim.  Instead, I believe it is critical that we develop the ability for 

our modeling architectures to acquire their own knowledge without direct human assistance.  

This will require a variety of learning mechanisms, based on a combination of cognitive 

psychology, machine learning, and internet search algorithms.    
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