

PIONEERS IN COLLABORATIVE RESEARCH®

The Quest for the Next Information Processing Technology

Dr. Jeff Welser Director, SRC Nanoelectronics Research Initiative IBM Almaden Research Center

September, 2008

- Complementary Metal-Oxide-Semiconductor (CMOS) Field-Effect Transistor (FET)
 - N-type (electron carriers) and P-type (hole carriers) integrated together
 - Used primarily as a digital on/off switch
- Basic transistor used on digital Integrated Circuits (IC) chips
 - ~1 billion on the biggest chips today (~4 cm²)

Electronics, Volume 38, Number 8, April 19, 1965

Moore's Law: Transistors per chip Binary Information Throughput (BIT)

CMOS Power Issue: Active vs. Passive Power

Has This Ever Happened Before?

2005 ~ 2020: New utilization of technology

- Multi-core, 3D integration, new memory devices, sensors, etc.
- > 2020?: New technology \rightarrow Nanoelectronics Research Initiative

Particle Location is an Indicator of State

Electronic switches can be of different nature, but they all have similar fundamentals

SRC[®] Basic Equations of Two-well Bit

Classic Distinguishability: *The Boltzmann constraint*

How small could the energy barrier height be ?

[®] Summarizing, what we have learned so far from fundamental physics

3) Minimum state switching time

$$\Delta E \Delta t \ge \hbar$$
Heisenberg

$$t_{st} = \frac{\hbar}{kT \ln 2} = 4 \times 10^{-14} \, s(300K)$$

4) Maximum gate density

$$n = \frac{1}{x_{\min}^2} = 4.6 \times 10^{13} \, \frac{gate}{cm^2}$$

• **A Catastrophe!** (@E_{bit}= *k*7ln(2))

$$P_{chip} = \frac{n \cdot E_{bit}}{t} = 4.6 \cdot 10^{13} [cm^{-2}] \cdot \frac{3 \cdot 10^{-21} [J]}{4 \cdot 10^{-14} [s]}$$

$$E_{bit} = k_B T \ln 2 \approx 3 \cdot 10^{-21} J$$

$$P_{chip} = 4.74 \times 10^6 \frac{W}{cm^2}$$
 T=300 K

The circuit would vaporize when it is turned on!

FETs approach the "kT" limit

Data compiled by R. Keyes, IBM Research Emeritus

Devices for Nanoelectronics Circuits

- Power / Heat Generation is the main limiting factor for scaling of device speed and switch circuit density
- Scaling to molecular sizes may not yield performance increases
 - Forced to trade-off between speed and density
- Optimal dimensions for electronic switches should be ~5-50nm
 - Achievable with Si easily within the scope of ITRS projections
- Going to other materials for FETs will likely achieve only "onetime" percentage gains
- Need a new device mechanism or computation architecture to enable a new scaling path

Seyond CMOS Logic: What to look for?

- To beat the power problem requires:
 - A device with a lower energy, room temperature switching mechanism

or

 A system that operates out of equilibrium or recovers operation energy as part of the logic computation

Required characteristics:

- Scalability
- Performance
- Energy efficiency
- Gain
- Operational reliability
- Room temp. operation
- Preferred approach:
 - CMOS process compatibility
 - CMOS architectural compatibility

Alternative state variables

- Spin–electron, nuclear, photon
- Phase
- Quantum state
- Magnetic flux quanta
- Mechanical deformation
- Dipole orientation
- Molecular state

- NRI Mission: Demonstrate novel computing devices capable of replacing the CMOS FET as a logic switch in the 2020 timeframe.
 - These devices should show significant advantage over ultimate FETs in power, performance, density, and/or cost to enable the semiconductor industry to extend the historical cost and performance trends for information technology.
 - To meet these goals, NRI pursues five research vectors:
 - Device with alternative state vector
 - Non-equilibrium systems
 - Non-charge data transfer (interconnects)
 - Nanoscale phonon engineering for thermal management
 - Directed self-assembly of these new devices
 - Finally, it is desirable that these technologies be capable of integrating with CMOS, to allow exploitation of their potentially complementary functionality in heterogeneous systems and to enable a smooth transition to a new scaling path.

R

NRI Funded Universities NIST

 Leveraging industry, university, and both state & fed government funds, and driving university nanoelectronics infrastructure

Western Institute of Nanoelect

Nanoelectronics • Architectures

WIN Western Institute of Nanoelectronics	INDEX Institute for Nanoelectronics Discovery & Exploration	SWAN SouthWest Academy for Nanoelectronics	MIND Midwest Institute for Nanoelectronics Discovery
UCLA, UCSB, UC- Irvine, Berkeley, Stanford, U Denver, Portland State	SUNY-Albany, GIT, RPI, Harvard, MIT, Purdue, Yale, Columbia, Caltech, NCSU, UVA	UT-Austin , UT-Dallas, TX A&M, Rice, ASU, Notre Dame, Maryland, NCSU, Illinois-UC	Notre Dame, Purdue, Illinois-UC, Penn State, Michigan, UT-Dallas
Theme 1: Spin devices Theme 2: Spin circuits Theme 3: Benchmarks & metrics Theme 4: Spin Metrology	Task I: Novel state-variable devices Task II: Fabrication & Self- assembly Task III: Modeling & Arch Task IV: Theory & Sim Task V: Roadmap Task VI: Metrology	Task 1: Logic devices with new state-variables Task 2: Materials & structs Task 3: Nanoscale thermal management Task 4: Interconnect & Arch Task 5: Nanoscale characterization	Theme 1: Energy Efficient Devices Theme 2: Energy Efficient Architectures

Spin Wave Device Research Will Western Multiple PI's

Magnetic Quantum Cellular Automata (MQCA) SR M. Niemier, Notre Dame Nanoelectronics • Architectures

Experimental

MIDWEST INSTITUTE FOR NANOELECTRONICS DISCOVERY

R. Cowburn, M. Welland, "Room temperature magnetic guantum cellular automata," Science 287, 1466, 2000 A. Imre, "Experimental Study of Nanomagnets for Magnetic QCA Logic Applications," U. of Notre Dame, Ph.D. Dissertation.

A. Imre, et. al., "Majority logic gate for Magnetic Quantum-Dot Cellular Automata," Science, vol. 311, No. 5758, pp. 205-208, January13, 2006.

Gate

A. Imre, et. al. "Magnetic Logic Devices Based on **Field-Coupled** Nanomagnets," NanoGiga 2007.

A. Imre, et. al., "Majority logic gate for Magnetic Quantum-Dot Cellular Automata," Science, vol. 311, No. 5758, pp. 205–208, January13, 2006.

[®] 2005 ITRS Energy / Cost / Area / Delay Fig. 52, 2005 Emerging Research Devices Report www.itrs.net/reports.html

Figure 52 Parameterization of Emerging Technologies and CMOS— Speed, Size, Cost, and Switching Energy

- Many different device ideas being considered some 'likely' attributes compared to CMOS:
 - Slower
 - Denser / 3D
 - Local interconnect focused
 - Uniform arrays / sea-of-gates
 - Variability still an issue

Proof of concept?

- Architecture / System Question:
 - How to get high computation throughput with these attributes?

- Power will continue as the principal scaling issue for all IC applications
 - CMOS will continue to scale over at least the next decade, with emphasis on utilizing increasing transistor density over increasing frequency
- Any new technology must overcome the power / performance limits of a charge-based FET to continue the scaling trend of increased function / dollar
 - Does the device offer the prospect of lower energy storage / operation than CMOS?
 - Does the computation system offer the prospect of nonequilibrium or energy-recovery in operation?

Nanoelectronics Research Initiative

Jeff Welser, Director jeff.welser@src.org

Allison Hilbert, Executive Assistant <u>allison.hilbert@src.org</u>