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ﬁ Modern IC Chip Structure




ﬁ Today’s Switch: CMOS-FET
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(Semiconductor)

=  Complementary Metal-Oxide-Semiconductor (CMOS) Field-Effect Transistor (FET)
= N-type (electron carriers) and P-type (hole carriers) integrated together
= Used primarily as a digital on/off switch

= Basic transistor used on digital Integrated Circuits (I1C) chips
= ~1 billion on the biggest chips today (—4 cm?)



ﬁ Moore’s Law
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Moore’s Law: Transistors per chip
Binary Information Throughput (BIT)
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Why scaling? — To
Increase the Binary
Information Throughput
(BIT)
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Transistor Scaling
Dennard, et al., 1974
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CMOS Power Issue:

Active vs. Passive Power NI
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Module Heat Flux(watts/cm?)
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2005 ~ 2020: New utilization of technology
» Multi-core, 3D integration, new memory devices, sensors, etc.

> 20207?: New technology = Nanoelectronics Research Initiative



New Device Types

Molecular devices
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Information is measure of distinguishability
manifested in physical form
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" Electronic switches can be of different nature, but o
they all have similar fundamentals NRI




E Basic Equations of Two-well Bit

# What are the requirements/limitations
on the height and width the barrier?

“Boltzmann constraint” on “Heisenberg constraints”
minimum barrier height on minimum barrier width




" Classic Distinguishability:
The Boltzmann constraint

How small could the energy barrier helight be ?
—>
| = Barrier control (gate)

/a\‘
<« — > \E E,

9 +
OR
E{»lé Or—
. .
min E
. — Il = exp(—>—
blt Eb error p(kBT)
Distinguishability requirement: The | > 0.5 = exp(—i)
probabllity of spontaneous Energy to al

<0.5 (50%) “deform” the

transitions(errors) Il barrier Egnin =k,TIn2

error




" Summarizing, what we have learned so far
from fundamental physics

Il) Minimum energy per binary transition ——> [—=min __ I
Boltzmann By =KgT In2

2) Minimum distance between two distinguishable states

— h
AXApP > 7 Xenin = & = =1.5nm(300K)
P Heisenberg V2mkT In2

3) Minimum state switching time

— _ h _ 14
AEAL > A Heisenberg t, = TIno 4x107"s(300K)
. _ 1 13 gate
4) Maximum gate density n=——=4.6x10 5

Xmin cm
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E®Total Power Dissipation

- A Catastrophe!

(QE,;= K7In(2))

-21
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chip sz
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The circuit would vaporize when it is turned on!
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FETs approach the “kT” limit N
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ﬁ Devices for Nanoelectronics Circuits

* Power / Heat Generation is the main limiting factor for
scaling of device speed and switch circuit density

= Scaling to molecular sizes may not yield performance increases
» Forced to trade-off between speed and density

= Optimal dimensions for electronic switches should be ~5-50nm
= Achievable with Si — easily within the scope of ITRS projections

= Going to other materials for FETs will likely achieve only “one-
time” percentage gains

» Need a new device mecharnism or computation architecture
to enable a new scaling path

18



EBeyond CMOS Logic: What to look for?

= To beat the power problem requires:
= A device with a lower energy, room temperature switching mechanism
or

= A system that operates out of equilibrium or recovers operation energy
as part of the logic computation

"= Required characteristics: Alternative state variables

= Scalability = Spin—electron, nuclear, photon
= Performance
= Phase

= Energy efficiency
= Gain = Quantum state

= QOperational reliability = Magnetic flux quanta
T Ml Eeg. EeeiEen = Mechanical deformation

= Dipole orientation

= Preferred approach:
= Molecular state

= CMOS process
compatibility

= CMOS architectural
compatibility



ﬁ Nanoelectronics Research Initiative Mission ‘Nél

= NRI Mission: Demonstrate novel computing devices capable of
replacing the CMOS FET as a logic switch in the 2020
timeframe.

» These devices should show significant advantage over ultimate
FETs in power, performance, density, and/or cost to enable the
semiconductor industry to extend the historical cost and
performance trends for information technology.

* To meet these goals, NRI pursues five research vectors:

» Device with alternative state vector

* Non-equilibrium systems

e Non-charge data transfer (interconnects)

e Nanoscale phonon engineering for thermal management

e Directed self-assembly of these new devices

= Finally, it is desirable that these technologies be capable of
Integrating with CMOS, to allow exploitation of their potentially
complementary functionality in heterogeneous systems and to
enable a smooth transition to a new scaling path.

20



ﬁ NRI Primary Research Vectors

= NEW DEVICE
Device with alternative
state vector

= NEW WAYS TO CONNECT
DEVICES
Non-charge data transfer

= NEW METHODS FOR
COMPUTATION
Non-equilibrium systems

= NEW METHODS TO MANAGE
HEAT
Nanoscale phonon engineering

= NEW METHODS OF FABRICATION
Directed self-assembly devices

21



ﬁ NRI Funded Universities NIST

Nanoelectronics « Architectures
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ﬁ NRI Research Centers

NST

= [everaging industry, university, and both state & fed government funds,
and driving university nanoelectronics infrastructure

Nanoelectronics « Architectures
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ﬁ® Spin Wave Device Research\N\///\/ ==

Multiple PI's
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, Single Electron Spin
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®Magnetic Quantum Cellular Automata (MQCA)

M. Niemier, Notre Dame

Manoelectronics = Architectures
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Ph.D. Dissertation.

A. Imre, et. al., “Majority logic gate for Magnetic Quantum-
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ﬁ® 2005 ITRS Energy / Cost / Area / Delay

Fig. 52, 2005 Emerging Research Devices Report www.itrs.net/reports.htm/ NIRd
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ﬁ Computing with Alternate State Variables

NRI

= Many different device ideas being considered —
some ‘likely’ attributes compared to CMOS:
= Slower ‘Switch’ ~ msecs

~1O8 MIPS A
- Dense_r / 3D ~30W
= Local interconnect focused
= Uniform arrays / sea-of-gates , s

= Variability still an issue

Proof of concept?

= Architecture / System Question:

= How to get high computation throughput with these
attributes?

28



ﬁ Two Take-aways

NRI

= Power will continue as the principal scaling issue for all IC
applications

= CMOS will continue to scale over at least the next decade, with
emphasis on utilizing increasing transistor density over increasing
frequency

= Any new technology must overcome the power /
performance limits of a charge-based FET to continue the
scaling trend of increased function / dollar

» Does the device offer the prospect of lower energy storage /
operation than CMOS?

* Does the computation system offer the prospect of non-
equilibrium or energy-recovery in operation?

29
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