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Modern IC Chip Structure

8x

4x

2x

8x

4x

2x



3

Today’s Switch: CMOS-FET
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(20 nm)

Complementary Metal-Oxide-Semiconductor (CMOS) Field-Effect Transistor (FET)
N-type (electron carriers) and P-type (hole carriers) integrated together
Used primarily as a digital on/off switch

Basic transistor used on digital Integrated Circuits (IC) chips
~1 billion on the biggest chips today (~4 cm2)
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Moore’s Law
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Electronics, Volume 38, Number 8, April 19, 1965
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Moore’s Law: Transistors per chip
Binary Information Throughput (BIT)

Why scaling? – To 
increase the Binary 
Information Throughput
(BIT)
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What is the ultimate number of 
binary transitions per second  in 
a 1cm2 chip area?

nbit – the number of binary states 
f – switching frequency

- a measure of 
computational 
capability on 
device level

fnBIT bit=

Motivation: ↑density
speed ↑

 functionality↑
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Transistor Scaling
Dennard, et al., 1974
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RESULTS:
Higher Density: α2

Higher Speed: α
Lower Power: 1/α2

per circuit  
Power Density: Constant 
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CMOS Power Issue:
Active vs. Passive Power
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Has This Ever Happened Before? 

Year of Announcement
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2005 ~ 2020: New utilization of technology
• Multi-core, 3D integration, new memory devices, sensors, etc. 

> 2020?: New technology Nanoelectronics Research Initiative
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New Device Types

3D, heterogeneous 
integration
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What is Information?

Source: IBM

Information is measure of distinguishability
manifested in physical form
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Particle Location is an Indicator of State
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Electronic switches can be of different  nature, but 
they all have similar fundamentals
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Basic Equations of Two-well Bit

What are the requirements/limitations 
on the height and width the barrier?

Eba

“Heisenberg constraints”
on minimum barrier width
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Classic Distinguishability: 
The Boltzmann constraint

bbit EE =min
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How small could the energy barrier height be ?
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Distinguishability requirement: The 
probability of spontaneous 
transitions(errors) Πerror<0.5 (50%)

Barrier control (gate)

Energy to 
“deform” the 
barrier
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Summarizing, what we have learned so far 
from fundamental physics

1) Minimum energy per binary transition 2lnmin TkE Bbit =Boltzmann
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Total Power Dissipation 
(@Ebit= kTln(2))

- A Catastrophe!
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The circuit would vaporize when it is turned on!
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FETs approach the “kT” limit

Data compiled by 
R. Keyes, 

IBM Research Emeritus
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Devices for Nanoelectronics Circuits

Power / Heat Generation is the main limiting factor for 
scaling of device speed and switch circuit density

Scaling to molecular sizes may not yield performance increases
Forced to trade-off between speed and density

Optimal dimensions for electronic switches should be ~5-50nm
Achievable with Si – easily within the scope of ITRS projections

Going to other materials for FETs will likely achieve only “one-
time” percentage gains

Need a new device mechanism or computation architecture 
to enable a new scaling path
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Beyond CMOS Logic: What to look for?

Required characteristics:
Scalability
Performance
Energy efficiency
Gain
Operational reliability 
Room temp. operation

Preferred approach:
CMOS process 
compatibility
CMOS architectural 
compatibility

Alternative state variables
Spin–electron, nuclear, photon
Phase 
Quantum state
Magnetic flux quanta
Mechanical deformation
Dipole orientation
Molecular state

To beat the power problem requires:
A device with a lower energy, room temperature switching mechanism

or
A system that operates out of equilibrium or recovers operation energy 
as part of the logic computation
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Nanoelectronics Research Initiative Mission

NRI Mission: Demonstrate novel computing devices capable of 
replacing the CMOS FET as a logic switch in the 2020 
timeframe.

These devices should show significant advantage over ultimate 
FETs in power, performance, density, and/or cost to enable the 
semiconductor industry to extend the historical cost and 
performance trends for information technology.

To meet these goals, NRI pursues five research vectors:
• Device with alternative state vector
• Non-equilibrium systems
• Non-charge data transfer (interconnects)
• Nanoscale phonon engineering for thermal management
• Directed self-assembly of these new devices

Finally, it is desirable that these technologies be capable of 
integrating with CMOS, to allow exploitation of their potentially 
complementary functionality in heterogeneous systems and to 
enable a smooth transition to a new scaling path.
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NRI Primary Research Vectors

NEW DEVICE
Device with alternative
state vector

NEW WAYS TO CONNECT
DEVICES
Non-charge data transfer

NEW METHODS FOR 
COMPUTATION
Non-equilibrium systems

NEW METHODS TO MANAGE
HEAT
Nanoscale phonon engineering

NEW METHODS OF FABRICATION
Directed self-assembly devices
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NRI Funded Universities

22

Columbia
Harvard
Purdue
UVA
Yale
UC Santa Barbara
Stanford
U. Mass
U. Arkansas
U. Oklahoma
Notre Dame
U. Nebraska/Lincoln
U. Maryland
Cornell
UT Austin
Caltech

UC Los Angeles
UC Berkeley
UC Irvine
UC Santa Barbara
Stanford
U Denver
Portland State

Notre Dame Purdue
Illinois-UC Penn State
Michigan UT-Dallas

UT-Austin Rice Texas A&M
UT-Dallas ASU Notre Dame
U. Maryland NCSU Illinois UC

SUNY-Albany GIT Harvard
Purdue RPI Columbia
Caltech MIT NCSU
Yale UVA

Over 30 Universities in 19 States
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NRI Research Centers

Leveraging industry, university, and both state & fed government funds, 
and driving university nanoelectronics infrastructure

INSTITUTE FOR NANOELECTRONICSINSTITUTE FOR NANOELECTRONICS
DISCOVERY    AND     EXPLORATIONDISCOVERY    AND     EXPLORATION
INSTITUTE FOR NANOELECTRONICSINSTITUTE FOR NANOELECTRONICS
DISCOVERY    AND     EXPLORATIONDISCOVERY    AND     EXPLORATION
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WIN
Western Institute of 
Nanoelectronics

INDEX
Institute for 
Nanoelectronics 
Discovery & Exploration

SWAN
SouthWest Academy for 
Nanoelectronics

MIND
Midwest Institute for 
Nanoelectronics 
Discovery

UCLA, UCSB, UC-
Irvine, Berkeley, 
Stanford, U Denver, 
Portland State

SUNY-Albany, GIT, RPI, 
Harvard, MIT, Purdue, 
Yale, Columbia, Caltech, 
NCSU, UVA

UT-Austin, UT-Dallas, TX 
A&M, Rice, ASU, Notre 
Dame, Maryland, NCSU, 
Illinois-UC

Notre Dame, Purdue, 
Illinois-UC, Penn State, 
Michigan, UT-Dallas

Theme 1: Spin devices
Theme 2: Spin circuits
Theme 3: Benchmarks 

& metrics
Theme 4: Spin 

Metrology

Task I: Novel state-variable 
devices

Task II: Fabrication & Self-
assembly

Task III: Modeling & Arch
Task IV: Theory & Sim
Task V: Roadmap
Task VI: Metrology

Task 1: Logic devices with 
new state-variables 

Task 2: Materials & structs
Task 3: Nanoscale thermal 

management
Task 4: Interconnect & Arch
Task 5: Nanoscale 

characterization

Theme 1: Energy 
Efficient Devices

Theme 2: Energy 
Efficient Architectures
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Spin Wave Device Research
Multiple PI’s
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INSTITUTE FOR NANOELECTRONICSINSTITUTE FOR NANOELECTRONICS
DISCOVERY    AND     EXPLORATIONDISCOVERY    AND     EXPLORATION
INSTITUTE FOR NANOELECTRONICSINSTITUTE FOR NANOELECTRONICS
DISCOVERY    AND     EXPLORATIONDISCOVERY    AND     EXPLORATION
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Single Electron Spin
Devices

Raynolds et al (UAlbany) 
Quantum Dot Devices

Oktyabrsky et al (UAlbany) 

Ballistic Spin Devices
Labella et al (UAlbany) 

Post CMOS Switches

S→TS pump
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Molecular Excitons 
Spintronics

Baldo et al (MIT)

Logical Switches based on Complex Oxides
Ahn et al (Yale)
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Multi bits logic

Magnetoelectronic Devices
Ross et al (MIT)

Graphene Nanowire Switches
Murali and DeHeer (GT)

Molecular Nanowire Switches
Kaloyeros et al  (UAlbany) 

Reconfigurable One-Dimensional (1D) 
Switch (R1DS)

Ji Ung Lee (UAlbany)

Graphene based Quantum Devices
Charles Marcus (Harvard)

Quantum Dot Modeling
Shur et al (RPI) 



Magnetic Quantum Cellular Automata (MQCA)
M. Niemier, Notre Dame
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R. Cowburn, M. Welland, “Room temperature magnetic 
quantum cellular automata,” Science 287, 1466, 2000

A. Imre, “Experimental Study of Nanomagnets for 
Magnetic QCA Logic Applications,” U. of Notre Dame, 
Ph.D. Dissertation.
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A. Imre, et. al. 
“Magnetic Logic 
Devices Based on 
Field-Coupled 
Nanomagnets,”
NanoGiga 2007.

A. Imre, et. al., “Majority logic gate for Magnetic 
Quantum-Dot Cellular Automata,”
Science, vol. 311, No. 5758, pp. 205–208, 
January13, 2006.

A. Imre, et. al., “Majority logic gate for Magnetic Quantum-
Dot Cellular Automata,” Science, vol. 311, No. 5758, pp. 
205–208, January13, 2006.
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2005 ITRS Energy / Cost / Area / Delay
Fig. 52, 2005 Emerging Research Devices Report www.itrs.net/reports.html
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Computing with Alternate State Variables

Many different device ideas being considered –
some ‘likely’ attributes compared to CMOS:

Slower
Denser / 3D
Local interconnect focused
Uniform arrays / sea-of-gates
Variability still an issue

Architecture / System Question:
How to get high computation throughput with these 
attributes?

Proof of concept?

‘Switch’ ~ msecs
~108 MIPs
~30W
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Two Take-aways

Power will continue as the principal scaling issue for all IC 
applications

CMOS will continue to scale over at least the next decade, with 
emphasis on utilizing increasing transistor density over increasing 
frequency

Any new technology must overcome the power / 
performance limits of a charge-based FET to continue the 
scaling trend of increased function / dollar

Does the device offer the prospect of lower energy storage / 
operation than CMOS?
Does the computation system offer the prospect of non-
equilibrium or energy-recovery in operation?
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