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Metal additive manufacturing (AM) has found broad application in the manufacturing sector, from medical 

devices to jet engine fuel nozzles. Key sectors of the metal AM market include aerospace and medical 

device manufacturing, where the emphasis on part quality is paramount.  However, despite the huge benefits 

that AM offers manufacturers (e.g. speed, versatility, and adaptability), with today’s approach, a qualified 

process can be costly and time consuming, particularly for complex parts [1]. To overcome current barriers 

to adoption, it is necessary to develop a science-based, automated approach that can be easily implemented 

on the factory floor. Achieving the needed control to build a part using a metal powder-bed additive process 

requires voxel-by-voxel control of input parameters, such as the laser power, speed, and beam shape. 

Moreover, careful tuning of the laser spatiotemporal profile can enable voxel-specific microstructures and 

topological optimization of mechanical properties.  The vision of achieving a precise, optimized 3D map 

of input parameters is referred to as intelligent feed forward (IFF) control. By removing barriers to adopting 

metal AM for complex metal parts through IFF, a broad impact can be expected across multiple industries, 

and new applications can be explored.  

 

Figure. Diagram of a smart metal additive manufacturing process, highlighting the role of feed forward control 

(see step 2). IFF holds the potential to ensure that high-quality, complex metal parts are produced more rapidly, 

while reducing safety risks for critical parts and decreasing manufacturing costs. (Reproduced and modified with 

permission of Deloitte.) 

Qualification of critical components typically has three major components: engineering qualification, 

production qualification, and materials qualification. Because with additive manufacturing we are creating 

the material at the same time as we create the part, materials qualification becomes a complex issue. Indeed, 

several recent works detailing the physics of the process through both experiment and simulation have 

shown that the interaction of the moving laser with the rapidly heated and quenched melt pool is 

complicated and dynamic[2, 3]. The nonequilibrium conditions driving the solidification process leads to 

microstructures that are very different from those produced in standard processes (e.g. casting), thus 

predicting the final mechanical properties of the build becomes difficult.  Moreover, the local material 

properties are generally dependent on not only processing conditions but also on part geometry due to 

changing thermal boundary conditions.  In current powder bed fusion systems, geometry-specific 

parameters can be entered only for simple geometries such as overhangs or contours and usually in a binary 

manner which imposes discontinuities that can affect local part quality. This intertwined relationship 

between designed geometry, production parameters, local material properties and final engineering 

performance create a significant challenge to the traditional approach to qualification which requires new 

thinking to overcome.   



Optimization of the metal AM process is not trivial.  Today, we use extensive, iterative experimentation to 

optimize input parameters for the process such as the laser power, scan speed, hatch spacing, and beam 

size. However, as many as 130 process parameters are known to affect the final build quality and there is 

still debate in the industry whether all the necessary parameters are being properly monitored and 

controlled.  In situ sensors and feedback schemes can aid with process control. However, feedback is most 

efficient when the input parameters are close to optimal for the given geometry. Achieving the needed 

control throughout a part build requires local, geometry-based control of the input parameters, ideally 

driven by comprehensive analytics and not user-based experience.  

Modeling and simulation, combined with high-performance computing optimization, have the potential to 

move us to the next stage in controlling the process [4, 5]. In this methodology, the simulation will be used 

to teach the additive manufacturing machine how to build the part on a voxel-by-voxel basis and at the 

same time predict the output of the process sensors. Because we cannot expect the simulations to be perfect, 

feedback control will be used to correct the simulation-based build. After the build is complete, the sensor 

data will be compared with the simulation-based prediction. If the prediction and the experiment agree 

within some specified uncertainty, we believe that it will be possible to establish confidence with product 

engineers that the material is of the required quality to fulfill mission requirements. Not only could this 

provide more uniform material properties throughout a part, intelligent feed forward will also provide 

means to produce controlled gradient properties within a component. 

Conventional qualification requires many nondestructive and destructive evaluations. This procedure has 

been demonstrated to work well when producing thousands of copies of the same part per year. The situation 

is significantly different for short-run manufacturing which is common in Department of Energy labs which 

have a somewhat unique mission/application space. More generally however, the risk to the overall AM 

industry if feed forward concepts are not put into action is the potential of not being able to gain sufficient 

confidence in the quality of small lot production of parts for them to be qualified. The intelligent feed-

forward approach, when successfully implemented, will ensure “right every time” production or early 

automated rejection, thus buying down risk.  

As we learn more about the detailed physics of laser-powder interactions, melt-pool dynamics, 

microstructure development, and thermal stresses during cooling, the capabilities of the detailed simulation 

models will improve. However, in addition to being based on the knowledge gained from detailed high-

performance computer simulations, a true intelligent feed forward predictive model will need to be based 

on fast-running, reduced-order simulations and machine learning algorithms that can be run for every new 

part or configuration to be manufactured. Development of sufficiently accurate, rapid, reduced-order 

predictive models will be the key to wide application of the intelligent feed forward concept. That is a new 

challenge that will have to be met. In this presentation, I will describe the physics of the process, methods 

for process monitoring and control, and the enabling models and hardware of the IFF process that have the 

potential to transform metal AM into a truly ‘smart’ manufacturing technology over the next decade. 
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