

Computational Materials for the Design and Qualification of Additively Manufactured Components

Dr. Christapher Lang

NASA Langley Research Center Hampton, VA

US Frontiers of Engineering Symposium September 25, 2019

Additive Manufacturing

Selective Laser Melting (SLM)

Space Exploration

Potential of Additive Manufacturing (AM)

- Significantly reduced manufacturing time and cost
- Increased manufacturing capability
- Increased design complexity

Realizing the Potential of AM Design

- Topology optimized structures
- Location specific/gradient microstructures
- Multi-material systems
- Multi-functional systems

Qualification of Fracture-Critical AM Components

- Rocket Engine, Launch Vehicle
- Airframe

Directed Energy Deposition (DED)

Aeronautics Research

Computational Materials for Design and Qualification of AM Components

AM Processes

Other metal AM processes are being developed: binder-jet, material extrusion, vat photopolymerization, hybrid methods

<u>Based on Ref:</u>

- Ek, K., "Additive Manufactured Metals," Master of Science thesis, KTH Royal Institute of Technology (2014).
- Gradl, P., Brandsmeier, W., Calvert, M., et al., "Additive Manufacturing Overview: Propulsion Applications, Design for and Lessons Learned. Presentation," M17-6434. 1 December (2017).
- ASTM Committee F42 on Additive Manufacturing Technologies. Standard Terminology for Additive Manufacturing Technologies ASTM Standard: F2792-12a. (2012).
- Gradl, P.R., Greene, S.E., Protz, C., Bullard, B., Buzzell, J., Garcia, C., Wood, J., Osborne, R., Hulka, J. and Cooper, K.G., 2018. Additive Manufacturing of Liquid Rocket Engine Combustion Devices: A Summary of Process Developments and Hot-Fire Testing Results. In 2018 Joint Propulsion Conference (p. 4625).

AM Processes

Qualification of AM Components

- Challenges with additive manufacturing
 - Consistency
 - Defect control
 - Long and costly qualification process

Complex process-structure-property (PSP) relationship for AM

- Cannot be established by testing and empirical relationships alone
- Computational modeling is needed

Challenges for adoption of computational materials towards qualification

- How to adopt modeling and simulation methods under current rules and regulations
- Necessary validation and verification (V&V) efforts

GE Leap Engine Fuel Nozzle

- Designed for AM
- Part count reduced from 20 to 1
- Reduced weight by 25%
- 5x lifetime
- Certified part, manufacturing ~40k per year

RAMPT

RAMPT

Focus on the TCA addresses:

- ~50% of the engine cost
- >50% of weight
- significant portion of the development schedule

Hot-Fire Testing

Computational Process Modeling

Physics-based modeling of the additive manufacturing (AM) process contributes to the following:

- Process Design/Optimization
- Defect Formation/Mitigation
- Certification
- Component Design

Heat transfer during the process drives the formation of the microstructure and residual stress

Note: Dashed lines represent insignificant coupling which is generally ignored

Selective Laser Melting

Process Modeling Activities

Process Parameters

Selective Laser Melting Process Design Space

Process Design: Porosity

Lack of Fusion

<u>Keyholing</u>

Trapped Gas Inherited From Powder

Criterion for complete melting $(H)^2 (L)^2$

$$\left(\frac{H}{W}\right) + \left(\frac{L}{D}\right) \leq 1$$

with hatch spacing (H), layer thickness (L), and melt pool width (W) and depth (D)

Tang et al, Carnegie Mellon University

Multiscale Thermal Analysis

Fine Scale ~1 µm (powder spheres)

- Melt pool analysis
- Physics: electromagnetic scatter, heat conduction, fluid flow, surface tension, vapor pressure, phase change
- Provide heat input model (q) for thermal analysis

Intermediate Scale ~1 mm (scan path)

- Thermal analysis using scan strategy
- Physics: conduction, convection, radiation, phase change
- Model 'squares' with moving heat source q
- Provide equivalent heating (\hat{q}) for large scale

Large Scale ~1 m (build path)

- Thermal analysis of section/part
- Physics: conduction, convection, radiation, phase change
- Model build path with moving heat source \hat{q}
- Provide thermal history for section/part

Residual Stress

9.37e-4

8.35e-4

7.35e-4

6.25e-4

5.15e-4 3.95e-4

2.85e-4

1.75e-4 6.60e-5

-1.16e-4

- Incorporate single track thermal analysis for part scale predictions
- Utilize layer-by-layer approach and modified inherent strain method for efficiency

6.60e-5 -8.63e-5

Volumetric heating applied layer-by-layer

Vertical residual distortion (m) for a five layer line deposit by detailed process simulation (left) and the modified inherent strain method (right)

X. Liang et al./Additive Manufacturing 23 (2018) 147-486

PSP Framework

Data science-based approach to develop reduced-order models that establish process-structure-property (PSP) relations for AM

800

E600

400

1) Implement high-fidelity framework for characterizing property attributes with respect to process parameters and defects

2) Develop reduced-order PSP model which links process parameters to properties

PSP Framework

SPPARKS microstructure \rightarrow compute 2-point statistics

Kalidindi, Georgia Tech University

Why use 2-point statistics

- Principle Component Analysis (PCA)
- Each point represents a two-dimensional slice taken from the same 3D microstructure
- Total of 100 slices from a single 3D microstructure

PSP Framework

Incorporate Defects

- Equivalent microstructure
- Equivalent pore volume fraction
- 1% global strain applied
- Observation: High strain localization for the irregularly shaped pore

Build/ Loading direction

N

Y

Process Monitoring

Process Monitoring Supports:

- Quantitative measures during the build process
- Validation of modeling and simulation
- Process and part qualification

In-Situ Sensors:

• Thermal, Optical, Profilometry, Acoustic

Synchrotron Measurements:

• Dynamic X-ray Radiography (DXR) at the Advanced Photon Source

Benchmark Data:

- AM Bench
- AFRL AM Challenge Series

Camera Systems Heigel, NIST 2017

Argonne Advanced Photon Source

18

Dynamic X-Ray Radiography

Provides 2D high-speed, in-situ observation of dynamic behavior of powder and melt pool under scanning laser beam

- Up to 200kHz time resolution
- 2 µm pixel resolution
- 24 keV x-rays

Dynamic X-Ray Radiography

X-ray Vision of Metallic Powder-Bed AM

Keyhole Mode Melting

Laser scan across the x-ray beam

Frame rate: 45 kHz Exposure: 100 ps Laser power: 300 W Scan speed: 0.3 m/s Laser spot: ~100 µm Material: Ti-6Al-4V

Problem

Marshall Space Flight Center is using Concept Laser M2 and XLINE SLM systems to build space flight hardware. Process parameters for the M2 machine are established, but material produced by the newer XLINE machine showed unacceptable quality.

Goal

Use computational models to streamline parameter development for the XLINE machine

Approach

Predict the scan speed for various XLINE power settings to produce a similar melt pool depth as the M2

M2 Machine: Power 180 W, Scan Speed 600 mm/s, Hatch 4 mm

XLINE Machine: Power 180 W, Scan Speed 600 mm/s, Hatch 4 mm

Symmetric model for a single scan track

• Predict scan speeds for various XLINE powers to produce similar melt pool depths as the M2. Key difference is the beam width.

• MSFC spent 6 months experimenting with various parameters. With the modeling data, the XLINE process parameters were established in 3 weeks.

M2: w=54um

Power (W)	Scan Speed (mm/sec)	Depth (mm)	Width (mm)	
180	600	0.034	0.108	

XLINE: w=100 um

Power (W)	Scan Speed (mm/sec)	Depth (mm)	Width (mm)	
180	300	0.035	0.152	\vdash
250*	520	0.034	0.155	
400	1000	0.033	0.163	
500	1200	0.035	0.171	
600	1500	0.034	0.175	
945	2500	0.034	0.185	

* The power and scan speed established for the XLINE are 250 W and 500 mm/sec.

Concluding Remarks

Main focus of several research programs

Not everything has to be derived from first principles

A meaningful combination of physicsbased and empirical models can be used
"Big Data" may provide an alternative

approach

More work needed in this area:

- Effect of microstructure on properties
- Effect of defects
- Fatigue
- Material characterization
- Validated non-destructive investigation
- Corrosion / environmental effects

Concluding Remarks

Tony Rollett, Carnegie Mellon University Michael Gorelik, Federal Aviation Industry Paul Gradl, NASA Marshall Space Flight Center Albert To, University of Pittsburgh Lyle Levine, National Institute of Standards and Technology Ed Glaessgen, NASA Langley Research Center Saikumar Yeratapally, NASA Langley Research Center Joshua Fody, NASA Langley Research Center Eddie Schwalbach, Air Force Research Laboratory Tao Sun, Argonne National Laboratory Kevin Wheeler, NASA Ames Research Center Surya Kalidindi, Georgia Tech University

Thank you for your attention.