

Perception of Low-Cost Autonomous Driving

Tae Eun Choe, Guang Chen, Weide Zhang, Yuliang Guo, Ka Wai Tsoi

{choetaeeun, chenguang09, zhangweide, yuliangguo, kawaitsoi}@baidu.com

Baidu USA

Abstract

The paper introduces perception algorithms for low-cost autonomous driving in Apollo, the largest

open autonomous driving platform with a full stack of H/W and S/W developed by the autonomous

driving community. We review pros and cons of each sensor and discuss what functionality and

level of autonomy can be achieved with such sensors. We will also discuss specific perception

modules such as dynamic object detection and stationary object detection. We further explain

sensor fusion using Dempster-Shafer theory. We will also introduce virtual lane line and camera

calibration in autonomous driving.

1. Introduction

The development of the longer range and higher resolution lidar enabled Level-4 autonomous

driving with more accurate perception and localization in a certain area. However, the lidar is a

less reliable sensor under an extreme weather condition such as heavy rain or snow. Furthermore,

the expensive cost of the lidar prevents automakers’ production of a consumer autonomous car

with the lidar. On the other hand, a camera is more cost-effective and more robust to weather and

it is a key sensor for traffic light recognition and lane line detection. We will present algorithms to

achieve autonomous driving using economic sensors such as a camera and a radar. There are four

main pillars in camera and radar based perception: pre-processing, deep network, post-processing,

and fusion. The whole diagram is shown in Figure 1.

Figure 1: Flow diagram of vision-based autonomous driving

Codes and documents are available in github (Apollo2017). Apollo also provides ApolloScape

(ApolloScape2018), the largest open autonomous driving data for training and test. We believe

that developing autonomous driving algorithms together in an open platform and sharing training

and test data are the best way to achieve the safe and agile self-driving for all. Figure 2 shows an

image of an autonomously driving vehicle using Apollo platform.

Gain Control,
Tonemapping,
Demosaicking,

filtering
Image

Data
 Labeling

Radar + Image
Fusion

Online
Calibration

Tailgating
(Trajectory)

Lane/Flow
Tracking

Object
Tracking

Deep Network

Radar

GPS+IMU
Camera Parameters

3D
Geometry

Object
Detection

Lane/Flow
Detection

Lane/Flow

Post-Processing

Flow

Virtual Lane
Lane

Object with
distance &

velocity

Distance,
Velocity,

TTC

Pre-Processing

Network
Training &

Optimization

Prediction

Planning

Control

Data
 Collection

Fusion

Figure 2: Autonomous driving vehicle using Apollo platform

2. Data Collection and Labeling

2.1. Balanced Data Collection

In the deep learning era, data collection and labeling become more important tasks. The labeled

data should be well balanced over time, weather, and road conditions. The data should cover night,

dawn, sunrise, strong shadow, sunset in one axis. Another axis is weather with sunny, rainy, snowy,

foggy weather. The third axis will be varying road conditions such as straight, curved, fork, merged,

or intersection. All those scenes should be evenly distributed on each axis. Figure 3-(a) illustrates

the actual data distribution for different environments and 3-(b) shows the distribution of data after

collecting them in a balanced way.

Figure 3: Data distribution (a) Unbalanced real data (b) Balanced data

2.2. Data Labeling

Before driving, the routine to log vehicle information (yaw rate, speed), GPS, wiper(rain, snow),

low/high beam, timestamp, location and all sensor data should be implemented. The more such

data was saved, the easier labeling process will be. During driving, a car should be driven in the

center of a road as much as possible to imitate autonomous driving. In addition, there should be a

simple button to save last 30 seconds of data whenever the car experience specific or rare events.

After driving, any duplicated or similar scenes should be removed especially when a car stops. The

face of a pedestrian and the license plate of a vehicle should be also removed to protect the privacy.

After such processes are completed, data can be labeled.

2.3. Auto-labeling

Since manual labeling is costly and prune to make an human error, automatically labeled data

should be added in training dataset. The good candidate of auto-labeling is a stationary object such

as a lane, a traffic light, a traffic sign, or any road landmark. First, near-view objects were detected

Fork Merge Intersection Curve Straight

Da
w

n
 N

ig
ht

 S
un

ris
e/

se
t

 D
ay

Fork Merge Intersection Curve Straight

Da
w

n
 N

ig
ht

 S
un

ris
e/

se
t

 D
ay

by an existing detector while driving. After driving 200 meters, the 200-meter previous scene is

reviewed. Assuming near-view object detection and motion estimation are accurate, the

accumulated set of detected near-view objects, we can label objects far-away. Stationary objects

such as lane, traffic lights, traffic sign, or any landmark can be auto-labeled in this manner.

For smart recording, we designed multiple events such as deceleration, curves, cut-in, cut-out,

bump, etc. When such event occurs, the data before and after the event will be saved automatically.

For auto-labeling, speed and yawrate from Controller Area Network (CAN) bus or inertial

measurement unit (IMU) data should be recorded for accurate motion estimation. IMU is a useful

sensor to measure a vehicle pose. After we accumulate the pose of an ego-vehicle using IMU over

time, we can easily estimate any motion from time t to time t-n.

When the pose at time t is Mt→t-1 , where M is 4x4 matrix with rotation and translation elements,

the motion from time t to t-n will be

Mt→t-n = Mt→t-1 Mt-2→t-3 Mt-3→t-4 … Mt-n+1→t-n

This simple motion matrix Mt→t-n will convert the current vehicle pose to n times previous pose

directly. We search such motion until the ego-car go back to 200m back and project the trajectory

in the image. Then we can label the near-view stationary objects automatically without manual

labeling. Contrary to the manual labeling, this auto-labeling method can label 3D depth of each

object. In addition, the road surface is also reconstructed in 3D to label hill crest, bump, or clover

leaves. The example of the automated labeling is illustrated in Figure 4.

Figure 4: Automated labeling of stationary objects using vehicle motion

As shown in Figure 5, the auto-labeling can label invisible lane lines (Figure 5-(a)) and 3D lane

lines (Figure 5-(b))

 (a) (b)

Figure 5: Example of automated labeling of lane lines (a) Hidden lane lines are labeled (b)

3D lane lines are labeled.

Top-down view Image view

Go back to
200m before

3. Network training

Pre-processed image is transferred to a deep neural network (DNN) for object detection, object

tracking, lane line detection, landmark detection and other computer vision problems. For real-

time processing of high framerate and high resolution imagery data, network compression is

required. In literature, there are two main network compression approaches:

Lower-bit approximation: Rather than using the conventional 32bit float as a weight

representation, Float32 is quantized into INT8 to achieve real-time implementation

(Dettmeers2016).

Network layer reorganization: Another approach is to re-organize layers of a network. When

there are multiple tasks, the network structure can be re-organized by sharing common layers and

removing unnecessary layers.

4. Object detection

In a traffic scene, there are two kinds of objects, stationary object and dynamic object. Stationary

objects include a lane, a traffic light, a streetlamp, a barrier, a bridge above the road, and skyline.

Among dynamic objects, we care pedestrian, car, truck, bicycle, motorcycle, animal and more. For

the object detection, YOLO V3 (darknet) is used as a base network (Redmon2018). In YOLO V3,

more attributes of an object was added such as 3D size, 3D position, orientation and type. Detected

multiple objects were tracked across multiple frames using a cascade-based multiple hypothesis

object tracker.

5. Lane detection

Among stationary objects, a lane is a key stationary object for both longitudinal and lateral control.

An ego-lane guides lateral control and any dynamic object in the ego-lane determines longitudinal

control. We use the same YOLO (darknet) as a base network and add extra lane tasks at the later

part of the network to detect lane numbers (left, right, next left, next right, curb lines) and lane

types (white/yellow, solid/broken, fork/split).

6. Sensor fusion

Installing multiple sensors around a car facilitates full coverage of an environment and redundancy

for safety. Each sensor has different characteristics: the range of a lidar is short but its 3D

measurement is accurate; a radar also provides longitudinally accurate distance and velocity

measurements but laterally inaccurate; A camera is accurate for lateral measurement but worse for

longitudinal measurement. We learn a prior and belief function of each sensor and fuse all sensor

output using Dempster-Shafer theory (Wu2002).

7. CIPV detection and Tailgating

The trajectories of all vehicles were captured with respect to the self-driving vehicle (SDV).

Among them closest in-path vehicle (CIPV) is chosen for tailgating that SDV follows a front car.

When there is no lane such as at intersection but CIPV, SDV can still drive smoothly by following

CIPV since CIPV’s past trajectory provides SDV’s future path.

8. Camera calibration

Camera calibration is challenging but the most important procedure. There are three categories of

camera calibration:

Factory (initial) calibration

In the factory, we can estimate intrinsic and extrinsic camera parameters using fixed targets.

However, the pose of a camera changes over time. Therefore, the pose of cameras needs to be

updated frequently.

On-line calibration

We need to estimate long term pose of the camera with respect to a car body. On-line camera

calibration module calibrates camera pose every single frame. Even 0.3 degrees change in pitch

angle can impact totally incorrect control. For calibration, any object on the road can be used, such

as parallel lane lines, vertical landmarks, or any known size of cars or optical flow.

Instant pose estimation

The pose of a car body changes every frame. Especially passing through the bump, the pose

changes a lot which is not the camera pose issue but the car body pose issue. The pose can be

estimated by IMU but they are too noisy to use directly. The pose can be estimated by visual

features. By tracking the stationary objects, we can estimate motion, the history of pose, over time.

The estimated instant pose will provide much more accurate 3D perception of the scene.

9. Virtual lane

All lane detection results and tailgating flow will be combined spatially and temporarily to induce

the virtual lane. The virtual lane provides a path to drive even there is no lane line. The virtual lane

output is fed to planning and control modules for the actuation of the self-driving vehicle.

10. Conclusion

In this paper, we showed the overall perception algorithms for low-cost autonomous driving using

a camera and a radar. As deep neural network is the key tool to solve perception issues, data

collection and labeling became more important tasks. For the sustainable data labeling, auto-

labeling is introduced. For autonomous driving, dynamic object detection/tracking and stationary

object detection algorithms are discussed. To handle multiple sensors fusion, Dempster-Shafer

based sensor fusion algorithm is used. Additionally CIPV, tailgating, and camera calibration

algorithms are introduced.

References

(Apollo2017) Apollo: Open Autonomous Driving Platform, https://github.com/ApolloAuto/apollo

(ApolloScape2018) Apollo Data: Open Data for Autonomous Driving,

http://data.apollo.auto/?locale=en-us&lang=en

(Dettmeers2016) T. Dettmers, “8-Bit Approximations for Parallelism in Deep Learning,” ICLR

2016

(Pan2017) Xingang Pan, Jianping Shi, Ping Luo, Xiaogang Wang: “Spatial As Deep: Spatial CNN

for Traffic Scene Understanding,” AAAI 2018

(Redmon2018) J. Redmon, A. Farhadi, “YOLOv3: An Incremental Improvement,”

https://arxiv.org/abs/1804.02767

(Wu2002) H. Wu, M. Siegel, R. Stiefelhagen, J. Yang, “Sensor fusion using Dempster-Shafer

theory II: static weighting and Kalman filter-like dynamic weighting,” IEEE Instrumentation and

Measurement Technology Conference, 2002

https://github.com/ApolloAuto/apollo
http://data.apollo.auto/?locale=en-us&lang=en

	Perception of Low-Cost Autonomous Driving
	Tae Eun Choe, Guang Chen, Weide Zhang, Yuliang Guo, Ka Wai Tsoi
	{choetaeeun, chenguang09, zhangweide, yuliangguo, kawaitsoi}@baidu.com
	Baidu USA
	Abstract

	1. Introduction
	2. Data Collection and Labeling
	2.1. Balanced Data Collection
	2.2. Data Labeling
	2.3. Auto-labeling

	3. Network training
	4. Object detection
	5. Lane detection
	6. Sensor fusion
	7. CIPV detection and Tailgating
	8. Camera calibration
	Factory (initial) calibration
	On-line calibration
	Instant pose estimation

	9. Virtual lane
	10. Conclusion
	References

