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1. Introduction 

Today's society is rapidly advancing towards autonomous systems that interact and 

collaborate with humans, e.g., semiautonomous vehicles interacting with drivers and 

pedestrians, medical robots used in collaboration with doctors, or service robots 

interacting with their users in smart homes. One of the key aspects of safe and seamless 

interaction between autonomous systems and humans is studying how robots such as 

autonomous cars can influence humans' actions in one-on-one or group settings. This is 

usually overlooked by autonomous driving industry assuming humans act as external 

disturbances just like moving obstacles, or assuming that automation can always help 

societies without actually considering how humans can be impacted. Humans are not 

simply a disturbance that needs to be avoided; and they also do not easily adapt to any 

automation being inserted in their lives; humans are intelligent agents with 

approximately rational strategies who can be influenced and act in novel ways when 

interacting with other autonomous and intelligent agents. 

In this paper, we will discuss a unifying framework for influencing interactions in 

autonomous driving, i.e., actions of autonomous vehicles that can positively influence 

human-driven vehicles at vehicle-to-vehicle level or large-scale interactions. We believe 



influencing interactions is a significant component for enabling safe and reliable 

integration of autonomous vehicles in our society.  

 

2. Influencing Interactions at Vehicle Level 

In our work, we have designed a novel framework for understanding the interaction 

between autonomous vehicles and human-driven vehicles. We model this interaction as 

a dynamical system, where the state of the environment evolves based on the actions of 

the human-driven car and the autonomous car at each time step: 𝑥𝑥𝑡𝑡+1 = 𝑓𝑓(𝑥𝑥𝑡𝑡,𝑢𝑢𝐴𝐴𝑡𝑡 , 𝑢𝑢𝐻𝐻𝑡𝑡 ). 

Here, 𝑥𝑥𝑡𝑡 denotes the state of the environment computed based on the sensor values at 

each time step including the coordinates, velocity and heading of each vehicle present 

in this interaction, and the road and lane boundaries. The set of actions of each vehicle 

𝑢𝑢𝐴𝐴𝑡𝑡  for the autonomous car and 𝑢𝑢𝐻𝐻𝑡𝑡  for the human-driven car include the steering angle 

and acceleration of each vehicle. 

Our key insight is that autonomous cars can take actions that influence the behavior of 

the human-driven cars on the same road. We observe this in our own driving behavior, 

when a car tries to change lanes, it starts nudging into the destination lane, which 

further affects the cars in that lane to slow down. Similarly, the actions of an 

autonomous car can result in the human changing lanes, slowing down, or speeding up. 

Our approach for planning for influencing interactions for autonomous vehicles has a 

few fundamental components. We first develop imitation learning techniques to build 

predictive models of human driving behavior, and have designed interaction-aware 

controllers that model the interaction between a human and a robot as a Stackelberg 



game. Leveraging optimization-based and game theoretic techniques, our work 

produces robot policies that influence human behavior towards safer and more 

interactive outcomes in vehicle-to-vehicle interaction with autonomous cars [1, 2, 4]. 

 

Fig 1. Planning for an autonomous car that influences a human driven car and actively gathers information about its driving style. 

2.1. Human Driver Models 

Imitation learning address the problem of learning computational models of 

humans in many robotics settings. Here, we leverage similar techniques, where we 

model each human driver as an agent who approximately optimizes a reward 

function: 𝑢𝑢𝐻𝐻∗ = arg max
𝑢𝑢𝐻𝐻

𝑅𝑅𝐻𝐻(𝑥𝑥,𝑢𝑢𝐻𝐻 ,𝑢𝑢𝑅𝑅). We assume 𝑅𝑅𝐻𝐻(𝑥𝑥,𝑢𝑢𝐻𝐻 ,𝑢𝑢𝑅𝑅) = 𝑤𝑤 ⋅ 𝜑𝜑(𝑥𝑥,𝑢𝑢𝐻𝐻 ,𝑢𝑢𝑅𝑅), is 

this underlying reward function and is represented as a linear combination of a set 

of features 𝜑𝜑(𝑥𝑥, 𝑢𝑢𝐻𝐻,𝑢𝑢𝑅𝑅). These features in the setting of driving can include distances 

to the road boundaries, lane boundaries, or other cars, velocity and heading of the 

vehicles.  In our work, we collect training driving data in a driving simulator, and 

use this expert data in the form of demonstrations or preferences to learn the 

parameters 𝑤𝑤 of the reward function using techniques such as maximum entropy 



inverse reinforcement learning or active preference based learning of reward 

functions [1-5, 9, 11]. 

2.2. Planning for interaction-aware controllers.  

Once we have a predictive human driving model, we can plan for autonomous cars that 

better interact with humans by being mindful of how their actions influences humans. 

We consider a setting where the autonomous car optimizes for its own reward 

function: 𝑢𝑢𝑅𝑅∗ = arg max
𝑢𝑢𝑅𝑅

𝑅𝑅𝑅𝑅(𝑥𝑥,𝑢𝑢𝑅𝑅 ,𝑢𝑢𝐻𝐻∗ ). Here, the robot’s reward function directly depends 

on and influences 𝑢𝑢𝐻𝐻∗ , the learned human policy. 

This interaction modeling results in a two-player game between a human-driven car 

and an autonomous car. The actions of the autonomous car influences the actions of the 

human driven car, while the actions of the human driven car influences the actions of 

the autonomous car. In order to efficiently solve this interaction game and plan for 

autonomous vehicles, we approximately solve the game as a Stackelberg (leader-

follower) game. Our work results in influencing actions from the autonomous vehicle 

that are more assertive, more efficient, and in many settings safer. Some of these 

trajectories are shown in Fig 1. Our user studies suggest that autonomous cars that are 

mindful of their interactions with humans can achieve tasks such as lane changing or 

coordinating at intersections safely and efficiently [1, 2, 4].  

3. Influencing Interactions at the Global Level 

So far, we have discussed influencing interactions at the vehicle level, where the actions 

of an autonomous car influences the decision making of a human-driven car in its 



vicinity. This can be observed in many driving settings such as changing lanes, 

merging, or exiting from a highway and has substantial effects on the larger traffic 

system [6-8, 10, 12]. Our insight is that autonomous vehicles have the potential to 

impact human decision making. For instance, the presence of a large number of 

autonomous vehicles on roads can influence the state of traffic such as congestion, 

delay, or flow on each road and hence influence human’s routing choices. We now 

would like to discuss the challenges arising in mixed-autonomy traffic settings where a 

large number of autonomous vehicles and human-driven vehicles interact. 

3.1. Equilibria in Mixed-Autonomy Traffic 

Traffic congestion has large economic and social costs. The introduction of autonomous 

vehicles can potentially reduce this congestion, both by increasing network throughput 

and by enabling a social planner to incentivize users of autonomous vehicles to take 

longer routes that can alleviate congestion on more direct roads.  

We formalize the effects of altruistic autonomy on roads shared between human drivers 

and autonomous vehicles. We develop a formal model of road congestion on shared 

roads based on the fundamental diagram of traffic. We consider a network of parallel 

roads and provide algorithms that compute optimal equilibria that are robust to 

additional unforeseen demand. Our results show that even with arbitrarily small 

altruism, total latency can be unboundedly better than without altruism, and that the 

best selfish equilibrium can be unboundedly better than the worst selfish equilibrium. 

We validate our theoretical results through microscopic traffic simulations and show 



average latency decrease of a factor of 4 from worst-case selfish equilibrium to the 

optimal equilibrium when autonomous vehicles are altruistic [6].  

3.2. Humans' Routing Choice Models 

When users of a road network choose their routes selfishly, the resulting traffic 

configuration may become very inefficient. Because of this, we consider how to 

influence human routing decisions so as to decrease congestion on these roads.  

Similar to previous section, we consider a network of parallel roads with two modes of 

transportation: (i) human drivers who will choose the quickest route available to them, 

and (ii) a ride hailing service which provides an array of autonomous vehicle ride 

options, each with different prices, to users.  

We design a pricing scheme for the autonomous vehicles so that when autonomous 

service users choose from their options and human drivers selfishly choose their routes, 

road usage is maximized and transit delay is minimized. To do so, we formalize a 

model of how autonomous service users make choices between routes with different 

price v.s. delay values. Developing a preference-based algorithm similar to our work in 

learning reward functions in Section 2.1 to learn the preferences of the users, and using 

a vehicle flow model related to the Fundamental Diagram of Traffic, we formulate a 

planning optimization to maximize a social objective and demonstrate the benefit of the 

proposed routing and learning scheme [12]. 

3.3. Dynamic Routing in Mixed-Autonomy Traffic 



 

Fig 2. Using deep reinforcement learning to dynamically route autonomous cars. 

 We now consider a social planner that can control autonomous cars, which are a 

fraction of all present cars in mixed-autonomy traffic networks. We study a dynamic 

routing game, in which the route choices of autonomous cars can be controlled and the 

human drivers react selfishly and dynamically to autonomous cars’ actions. As the 

problem is prohibitively large, we use deep reinforcement learning to learn a policy for 

controlling the autonomous vehicles. This policy influences human drivers to route 

themselves in such a way that minimizes congestion on the network.  

To gauge the effectiveness of our learned policies, we establish theoretical results 

characterizing equilibria on a network of parallel roads and empirically compare the 

learned policy results with best possible equilibria. Moreover, we show that in the 

absence of these policies, high demands and network perturbations would result in 

large congestion, whereas using the policy greatly decreases the travel times by 

minimizing the congestion.  

4. Summary 

In this paper, we summarized our work in planning for influencing interactions in 

autonomous driving at two levels: i) vehicle-to-vehicle interaction, where an 

autonomous car plans to influence human-driven cars for safer and more efficient 



driving behavior, and ii) global-level interaction, where a larger number of autonomous 

vehicles and human-driven vehicles interact with each other on the same traffic 

network. We design routing decisions for autonomous vehicles that influence humans 

routing choices in order to decrease the total delay of the traffic network for a more 

desirable societal objective. 

It is only now that autonomous systems are finally weaving their way into our lives.  

Robots are moving into our homes. Smart cities and intelligent vehicles are becoming a 

reality. Our long-term goal is to develop a theory for modeling and designing the effects 

of automation and robotics on humans' decision making, and this work is a first step 

towards developing efficient robotics algorithms that lead to safe and transparent 

autonomous systems cognizant of the interactions and influences they can have on 

humans and our society. 
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