Shared Autonomous Electric Mobility: Opportunities & Challenges

T. Donna Chen, PE, PhD Assistant Professor Department of Engineering Systems & Environment March 22, 2019

SCHOOL of ENGINEERING & APPLIED SCIENCE

Convergence of Technologies

• Research focus is on operational impacts of simultaneous implementation of 3 technologies (shared, automated, electric) in various use cases.

Why SAEVs?

Shared Autonomous Electric Vehicle Chen Research Group

- 1. Chen, T.D, K. M. Kockelman & J.P. Hanna (2016) "Operations of a Shared, Autonomous, Electric Vehicle Fleet: Implications of Vehicle & Charging Infrastructure Decisions." *Transportation Research Part A: Policy and Practice* 94: 243-254.
- 2. Chen, T. D. & K.M. Kockelman (2016) "Management of a Shared Autonomous Electric Vehicle Fleet: Implications of Pricing Schemes." *Transportation Research Record* 2572: 37-46.
- 3. Farhan, J. & T.D. Chen (2018) "Impact of Ridesharing on Operational Efficiency of Shared Autonomous Electric Vehicle Fleet." *Transportation Research Part C: Emerging Technologies* 93: 310-321.
- 4. Farhan, J., T.D. Chen & Z. Zhang (2018) "Leveraging Shared Autonomous Electric Vehicles for First- and Last-Mile Mobility." Proceedings of the 97th Annual Meeting of the Transportation Research Board, January 2018, Washington, DC.
- 5. Hanna, J.P., M. Albert, T.D. Chen & P. Stone. (2016) "Minimum Cost Matching for Autonomous Carsharing." International Federation of Automatic Control Papers On Line 49-15: 254-259.
- 6. Zhang, Z. & T.D. Chen, "Smart Charging Management for Shared Autonomous Electric Vehicle Fleet: A Puget Sound Case Study," presented at the 98th Annual Meeting of the Transportation Research Board, January 2019, Washington, DC.

SAEV Modeling Framework

Trip Generation

 Use local travel demand model data to generate trips to simulate origindestination travel demand

Charging Station Generation

 Charging station site selection to ensure sufficient infrastructure coverage

SAEV Fleet Generation

 Determine the necessary fleet size to serve travel demand

Operation

 Continuous daily operation based on the station and fleet configuration

SAEV Simulator Implementation

- Available vehicles
- Vehicles at capacity
- Relocating vehicles
- Trip origins
- Trip destinations

EV Technology Assumptions

- SR EV: 40 kWh battery (Similar to Nissan Leaf)
- LR EV: 90 kWh battery (Similar to Tesla Model 3)

- LV2: Level 2 charger, 7 or 20 kW power
- FC: DC fast charger, 70 or 120 kW power

- Average energy efficiency: 0.33 kWh/mi
- Accounts for 20% increase in energy consumption due to vehicle automation hardware and software

SAEV Model Assumptions

We attempt to model "Year 1" operations of a SAEV fleet, where:

- Fleet serves 10% of a region's travel demand
- Land use and travel behavior have not yet been influenced by SAEVs
- Charging station capacity is not explicitly modeled, only charging station locations

SAEV Use Case: Door-to-Door Service

Case studies in Austin, Texas

Door-to-Door SAEV Service (Single Occupant): Fleet Size by Vehicle & Charging Infrastructure

- Fast charging infrastructure & longer EV range reduces required fleet size.
- Each SAEV can serve 11 to 21 trips per day, equivalent to replacing 3.7 to 6.8 privately owned vehicles. (SAVs serve, on average, 22 trips/day)

Door-to-Door SAEV Service (Single Occupant): "Empty" Miles Traveled

- "Empty" VMT constitutes 7 to 14% of all miles traveled. (For SAVs, "empty" VMT is 6.6%)
- Short range SAEVs incur more zero occupant miles due to more trips for recharging.

Door-to-Door SAEV Service (Single Occupant): Operational Cost Per Occupied-Mile Traveled

SR SAEVs with Level II charging are cheapest to operate on a per-mile basis, even if this configuration incurs highest % "empty" VMT (increases congestion) and require biggest fleet (requires more land for charging spots).

SAEV Door-to-Door Service with Dynamic Ridesharing

SR SAEV

LR SAEV

- "Empty" VMT comprises 13-16% of total VMT for SR SAEV scenario and 9-11% for LR SAEV scenario.
- Assuming all travelers are willing to participate in ridesharing, about 35% of all VMT include at least two passengers.
- One SAEV with dynamic ridesharing can replace 8 to 13 privately owned vehicles.

SAEV Door-to-Door Service with Dynamic Ridesharing

- As the number of pickup & drop-off locations increase in an itinerary of each vehicle, travelers experience longer wait times.
- Benefits associated with larger vehicles begin to diminish as reflected by marginal decrease in **fleet size** as vehicle capacity increases.
- Higher occupancy rates & lower VMT results in the reduced **number of charging stations**.

SAEV Door-to-Door Service w/ Dynamic Ridesharing

• Though the total % of trips served exceeds 96% in all scenarios, the **likelihood of matching a vehicle with a passenger varies by time of day**. During peak hours, matching rates can be as low as 85%.

SCHOOL of ENGINEERING & APPLIED SCIENCE

SAEV Use Case: First/Last Mile Connection

Case study in Seattle, Washington

SAEVs for First/Last Mile Connection

 SAEVs can help decrease the demand for scarce parking spots at Park & Rides, and reduce the parking infrastructure requirements on valuable real estate.

Park and Ride Lot replaced by Charging Station

Case study at Tukwila Light Rail Station in Seattle, Washington

- 2016 survey of rider origin-destinations
- Hourly boarding & alighting data

SAEVs for First/Last Mile Connection

- Enabling ridesharing in SAEVs for first/last mile mobility reduce system-wide VMT by 37% (compared to single occupancy).
- If all travelers participate in ridesharing, 40-45% of all VMT include at least two passengers, and ridematch rate is higher during AM & PM peaks.
- "Empty" VMT remains around 20% with ridesharing in all vehicle & charging infrastructure scenarios.
- One SAEV with dynamic ridesharing can replace 20 to 34 "park & ride" vehicles.
- The fleet size reduction benefit going from SR to LR vehicles is diminished, because trips are shorter in distance.

SAEV-Grid Interaction

SAEV-Grid Interaction Unmanaged SAEV Charging

Charging "as needed" minimizes SAEV "empty" travel distance for charging, but exhibits **peak charging periods** which coincide with **existing peak hours of electricity use**.

Energy Scenarios Data

- **Time-of-use** pricing scenario (*rates from Seattle City Light in 2017*)
 - Two-tier pricing structure, off-peak between 10 pm - 6 am
 - Demand charge recurring monthly
- **Real-time pricing** scenario (*LMP from ColumbiaGrid in 2017*)
 - Price updates hourly
 - Price data based on electricity wholesale market

SAEV-Grid Interaction SAEV Smart Charging under TOU Pricing

With increased battery capacity, LR vehicles exhibit superior ability to avoid charging on-peak. Compared to unmanaged charging, electricity costs can reduce 10% (SR SAEVs) to 34% (LR SAEVs).

SAEV-Grid Interaction

SAEV Smart Charging under Real Time Pricing

Under real time electricity pricing scheme, LR vehicles are able to decrease electricity cost by 36 to 43% compared to SR vehicles with smart charging. Adding fast charging infrastructure also allows more opportunistic charging during low priced periods.

SAEVs: Key Takeaways

- When ridesharing is considered, SAEVs are more efficient at serving first/last mile connection trips than door-to-door trips (higher average occupancy, better ridematch rates during peak hours).
 - How will we encourage disruptive mobility as part of a multimodal trip rather than a new replacement mode?
- "Empty" VMT as a singular measure is not indicative of service efficiency. Service configurations & use cases with higher "empty" VMT can mean higher average vehicle occupancy across all VMT.
 - Don't let the bad publicity of the empty autonomous car get in the way of the real focus: higher average occupancy.
- Charging station capacity can be reduced with longer range vehicles, fast charging infrastructure, and higher ridematch rates.
 - But shorter range vehicles & Level II charging infrastructure are cheaper for the fleet operator to acquire & implement.
- Battery capacity plays an essential role in SAEV-grid interactions. Larger batteries enable SAEVs to act simultaneously as mobile energy user & storage. But with current battery costs & static electricity pricing, fleet operators are not incentivized to adopt LR vehicles.
 - Electricity pricing structures should considered in the conversation about disruptive mobility.

T. Donna Chen tdchen@virginia.edu

TABLE

and have a start of

SCHOOL of ENGINEERING & APPLIED SCIENCE