Super-resolution STED microscopy and its application in neuroscience

Katrin Willig

18th German-American Frontiers of Engineering Symposium Hamburg

20-23 March 2019

Nanoscale Microscopy and Molecular Physiology of the Brain Cluster of Excellence 171, DFG Research Center 103

MPI of Experimental Medicine

Resolution in far-field light microscopy

diffraction limit: minimum resolvable distance

n: refractive index

"similar objects closer than about half the wavelength should not be distinguishable in a light microscope"

Ernst Abbe 1873

Standard (confocal) vs. Superresolution (STED)

Confocal (fluorescence) microscopy

STED (STimulated Emission Depletion) microscopy

y t 200 nm

Nobel Prize in Chemistry 2014 to Betzig, Hell & Moerner "for the development of super-resolved fluorescence microscopy."

STED beam: keeps molecules non-fluorescent

Diffraction limited resolution

Depletion distribution

Depletion distribution

Depletion distribution

Depletion distribution

Diffraction limited resolution

Synapse: connecting neurons

Electron microscopy:

Kristen M. Harris lab https://synapseweb.clm.utexas.edu/16-chemical-synapses-11

Spine/synapse plasticity requires nanoscale resolution

- Synapses are key functional information processing units of neural circuits.
- Spines are morphological correlates of synaptic strength
- Synaptopathies: Defects in synaptic proteins cause > 100
 brain diseases (Autism, Schizophrenia...)

Why imaging spines *in vivo*?

Cells & connections intact, Natural environment

Information processing

e.g. visual stimulation, learning tasks

State-of-the-art imaging: Two-photon microscopy

Zuo et al., 2005, Neuron, 46, 181

STED is ideal to superresolve structures in vivo

Cells & connections intact, Natural environment

Information processing

e.g. visual stimulation, learning tasks

Two-photon imaging

Zuo et al., 2005, Neuron, 46, 181

Super-resolution

Fluorescent proteins for live-cell STED microscopy

First discovered: Green Fluorescent Protein (GFP); (Shimomura 1961)

Aequorea victoria

Challenge of tissue imaging: Penetration depth

Problem: refractive index mismatch!

→ spherical aberrations

Glycerine immersion objective

$$n = 1,45$$

$$n = 1,3$$

$$63x$$

63x

Correction collar

... Compensates spherical aberrations

Exploring the brain *in vivo*

Cranial window for *in vivo* nanoscopy

Neurons expressing cytoplasmic EYFP

Visual cortex of living mouse

Berning, Willig, Steffens, Dibaj, Hell (2012) Science

Neurons expressing cytoplasmic EYFP

23 x 18 x 3 μm, 10μs / px, 800 x 600 x 5 px, interval 5 min

Berning, Willig, Steffens, Dibaj, Hell (2012) Science

Visual cortex of living mouse

Neurons expressing cytoplasmic EYFP

Visual cortex of living mouse 10 70nm 5 0 0.3 0.5 0.4 0.6 0.7

Berning, Willig, Steffens, Dibaj, Hell (2012) Science

Neurons expressing cytoplasmic EYFP

Visual cortex of living mouse

STED

128 z-stacks, 5 slices interval 10 sec

Berning, Willig, Steffens, Dibaj, Hell (2012) Science

In vivo STED microscopy of actin

Actin

Maximum intensity projection

Willig et al. (2014) Biophys. J. 106

Actin

In vivo STED microscopy of the post-synaptic density

- High complexity: PSD comprises ~1500 proteins
- **PSD** (post-synaptic density) size correlates with synaptic strength

Size 200-800nm 50nm thin

In vivo nano-organization of PSD95

min

Knock-in mouse PSD95-GFP Visual cortex Side-view:

In vivo STED

_500 nm

Top-view:

PSD95-GFP

Wegner, Mott, Grant, Steffens, **Willig** (2018) Sci Rep. 8, 219-219

Nano-organization of PSD95: EM vs. in vivo STED

fixed

In vivo

200nm

Stewart et al. (2005). European Journal of Neuroscience, 21(12), 3368–3378.

Morphological changes of large PSD95 assemblies in vivo

Time intervall

In vivo STED

Dissecting the PSD *in vivo*

Acknowledgement

Waja Wegner

Heinz Steffens

Alexander Mott

Nanoscale Microscopy and Molecular Physiology of the Brain Cluster of Excellence 171, DFG Research Center 103

MPI for Experimental Medicine

Collaboration: Sabine Liebscher, LMU Munich

