OHB System AG Kathrina Weiß 23.03.2019, GAFOE Symposium Hamburg

SPACE SYSTEMS

Observing the earth beat from space with high performance optical instruments

We. Create. Space.

Earth observation – what for?

- Climate modeling & monitoring
- Greenland Ice Change, 1992 to 2016 ESA

- Water and Resources monitoring
- Ecosystem monitoring

- Weather forecast
- Agricultural practices
- Air traffic optimization

- Disaster monitoring and management
- Wildfires, earthquakes, flooding, hurricanes, droughts, volcanic eruptions, ...
- Supporting emergency aid

LIDAR

- LIDAR
- Time of flight measurement
 - Altitude measurements
- Wind velocity: Doppler LIDAR
- Mission example ADM Aeolus
- Data usage
 - Weather forecast
 - Climate models
- Instrument parameters
 - Vertical resolution: 0.5- 2km
 - Accuracy 1-3 m/s averaged over 90 km
- Main technological challenge
- High power lasers in space

Doppler shift

Hyperspectral Instruments

- Hyperspectral Imagers
- Quasi continuous wavelength bands
- Mission example: EnMap
- Data usage:
 - Land cover changes/ land use
 - Ecosystem monitoring
 - Resource and water monitoring
 - Climate change
- Instrument parameters:
 - Low orbit
 - Spatial scanning
 - Ground Resolution: 30m
 - 244 spectral channels between 420nm and 2450 nm
- Main technological challenge
- Highly sensitive infrared detector
- Thermal stability of optical payload

EnMap: Environmental Mapping

Infra-red Fourier transform spectrometers

- Infra-red Fourier-transform spectrometers
- Wavelength dependent absorption
- Mission example: MTG Sounder
- Dynamic of atmospheric temperature and humidity
- Data usage
 - Early warnings of thunderstorms
 - Input to climate modeling
- Instrument parameters:
 - Geostationary orbit
 - Scan earth disc every hour
 - On-ground sampling: 4km x 4 km
- Main technological challenge
 - High precision optical scanner
 - Micro-vibrations
 - Sun Intrusion management

💉 Imagers

- Images in wavelength bands
- Mission example: **MTG Imager**
- Data usage
 - Weather forecast
 - Forest fire detection
- Instrument parameters:
 - Geostationary orbit
 - Scans quarter of earth disc every 2.5 minutes with 1 km resolution
 - Full earth disk every 10 minutes with 2 km resolution
 - Wavelength: 400nm to 16µm
- Main technological challenge
- High precision optical scanner
- Optical alignment/ shimming technology
- Sun Intrusion management

MTG: Meteosat Third Generation

MTG – Imager: Performance Requirements

- Wide spectral range: 414nm to 13.6µm
- Spatial sampling ~1km
- High pointing stability
- 1µrad over 0.3s
- 4µrad over 10min
- Mass limit
- Front telescope assembly 300 Kg
- High repeat cycle
- Scans earth disc every 10 minutes

- Geostationary orbit
- Sun Illumination and cold space
- Launch loads

- Zero gravity
- Vacuum
- Radiation

MTG – Challenges

MTG – Imager Design choices

- Wide spectral range
 - Mirror telescope
- Spatial sampling
 - Surface form error of front-telescope ~ 50 nm
 - Accurate placement of mirrors (~5µm)
- High pointing stability
 - Iso-static mounting
- Mass limit
 - Mirror light weighing
- High repeat cycle Geostationary orbit
 - Straylight control

MTG – Challenges

- Requirements
- Accurate (5µm) and stable mounting
- Fast and safe integration
- Mounting concept
- 3 dimensional wedged shims and pins
- Pre-calculate shim properties
- Accurate opto-mechanical characterization
- Data processing of > 40 Coordinate systems

Definition and drivers

Light scattered to detector, which does not contribute to the intended image.

Becomes more and more important with increasing sensitivity of optical sensors.

- Reflection from diffractive optics surfaces (e.g. lenses)
- Contamination
- Integration activity
- Surface roughness and defects
- Manufacturing process and scratches

Straylight prediction

- High accuracy modelling needed
- Contamination and high clean room requirements
- Manufacturing process selection and optimization
- Coating selection (anti-reflective coatings, black paint)
- Straylight correction algorithm

ОНВ

Straylight modeling (MTG)

Straylight model of instrument

- Surface scatter behavior
- Instrument design (from CAD)
- Light source (earth, sun)
- Ray tracing

Straylight model correlation (MTG)

Seite 14

Use AI/ machine learning to simplify straylight modeling?

Free form optics opportunities

Freeform optics involve optical designs with at least one freeform surface which has no translational or rotational symmetry about axes normal to the mean plane.

- Boosts performance with reduced size, weight and cost
- Larger FoV, higher image quality (better aberration correction)
- Reduced number of optical components
- Technological challenges
- High number of degrees of freedom to be handled during design and optimizations
- Classical metrology cannot be applied
- Requires high sophisticated ultraprecision machining

Conclusion

- Earth observation is key to understand our eco-system
- Earth observation data is present in our daily lives
- Earth observation is enabled by challenging optical technologies
- Earth observation technologies are and need to be mastered by multidisciplinary highly skilled engineering teams
- Earth observation application and developments are and will be more and more multi-national
- Crossing and even eliminating the frontiers between engineering disciplines and national engineering communities will be key for our future

Observing the earth beat from space with high performance optical instruments / 23.03.2019

OHB System AG