Artificial Intelligence and Deep Learning NAE GAFOE Session 2019

AI & Deep Learning Session Chairs

Sujith Ravi Google Research http://www.sravi.org/

Stefan Uhlich Sony Corporate Research <u>https://uhlich.updog.co/</u>

Artificial Intelligence (AI)

Human Brain

Machine Learning

Artificial Intelligence (AI)

Deep Learning

Deep Learning

Neural Networks

Data

Neural Networks are good *function approximators*

Neural Networks are good *function approximators*

Neural Networks that see & understand images

Surpasses human-level performance for recognizing thousands of object categories (ILSVRC 2014 task)

Neural Networks that see & understand images

Neural Networks that hear & understand speech

Acoustic input

Text output

Reduced word errors in speech recognition by >30%

Neural Networks that read & understand text

Neural machine translation achieves state-of-the-art performance

And applications beyond...

Health

Self-driving / Automotive

Games

. . .

Why is Deep Learning Effective?

- Simple neurons/networks have been around since ~1950s
- Why is deep learning trending now?

Hype Cycle for Emerging Technologies, 2018

Source: https://www.gartner.com/smarterwithgartner/5-trends-emerge-in-gartner-hype-cycle-for-emerging-technologies-2018/

- Simple neurons/networks have been around since ~1950s
- Why is deep learning trending now?

Hype Cycle for Emerging Technologies, 2018

Source: https://www.gartner.com/smarterwithgartner/5-trends-emerge-in-gartner-hype-cycle-for-emerging-technologies-2018/

- Massive parallel processing on GPUs/TPUs
 - Allows us to train large networks on large datasets

Workload: ResNet-50 | CPU: 1X Xeon E5-2690v4 @ 2.6 GHz | GPU: Add 1X Tesla P100 or V100 Source: https://www.nvidia.com/de-de/data-center/tesla-v100/

GPU ... Graphics processing unit TPU ... Tensor processing unit

- Access to huge datasets
 - Image, Video, Audio, Text/NLP, ...

1.2M images, 1K classes

5.8 thousand hours of audio, 527 classes

350K hours (= 40 years), ~4K classes

[YouTube-100M: 600 years of video - more than one human will see in his lifetime]

- Access to huge datasets
 - Deep neural networks (DNNs) nicely scale with more data

- Open-source software + ArXiv/ArXiv sanity
 - Open-source DNN toolboxes available: Tensorflow, PyTorch, ...
 - Many papers come with source code on Github
 - Timely access to latest results
 - \rightarrow Fast progress

So - everything is solved?

No - there are still many open problems that need to be tackled ...

- Fairness in machine learning (avoid to learn biases from datasets)
- Robustness against adversarial samples/adversarial users
- Explanations for decisions from a deep neural network/ML algorithm
- Learning from noisy labels
- (General) AI still not available

 \rightarrow Session presentations

Session Program

Software 2.0: Machine Learning is Changing Software Chris Re, Stanford University

Teaching Machines to Communicate with People using Deep Learning Zornitsa Kozareva, Google

Deep Learning for Visual and Virtual Worlds Eleonora Vig, German Aerospace Center (DLR)

Artificial Intelligence in Cognitive Neural Engineering Moritz Grosse-Wentrup, University of Vienna

