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 System analytics: how things are done 

 

 Use of models (physics) to inform AI algorithms 

 

 Use of AI algorithms to inform about the physics 
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 What are we trying to avoid 

 Solution: 

 

□ ADD MORE INTELIGENCE 

www.youtube.com 
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Path forward 
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Two Systematic Approaches to Increased Automation 

1 2 3 4 5 

1 9 8 7 6 

Close Acceleration Constant 
velocity 

Braking Open 

Acceleration Constant 
velocity 

Braking Ripples Close 

Purely data-driven 
Purely behavioral 

Simulink, MATLAB, Modelica, 

Simscape, Easy5 

Model-based 
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Data driven methods 

1 2 3 4 5 

1 9 8 7 6 

Close Acceleration Constant 
velocity 

Braking Open 

Acceleration Constant 
velocity 

Braking Ripples Close 

Purely data-driven 

 Pros: 

□ A plethora of statistical models 

(regression models, decision trees, 

neural networks) 

□ More and more efficient algorithms 

for training 

□ Easy access to documentation and 

training platforms 

□ Do not require “very” specialized 

training 



7 

Data driven methods 

1 2 3 4 5 

1 9 8 7 6 

Close Acceleration Constant 
velocity 

Braking Open 

Acceleration Constant 
velocity 

Braking Ripples Close 

Purely data-driven 

 Cons: 

□ May require a lot of data which is 

not always easy to obtain (assets 

do NOT fail very often) 

□ May take a long time to train 

□ Loss of explainability (systems are 

seen as black boxes – nothing is 

known about the internal structure 

and behavior)   
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Data driven methods 

1 2 3 4 5 

1 9 8 7 6 

Close Acceleration Constant 
velocity 

Braking Open 

Acceleration Constant 
velocity 

Braking Ripples Close 

Purely data-driven 

 Training: 
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Data driven methods enablers 

 

 Hardware Technology 

□ GPU 

□ Cheap storage 

 

 

 “Big data” 

 

NVIDIA 

www.blogs.gartner.com 
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Data-driven methods success stories 

 Object detection  

and tracking 

 

 

www.towardsdatascience.com 

 Speech recognition 

and translations 

 

 

 

www.medium.com 

 Text generation 

 

 

 

http://colah.github.io 
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Data-driven methods success stories, but… 

“All the impressive achievements of deep learning 

amount to just curve fitting.” 

Judea Pearl, 2011 ACM Turing award  
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Model-based methods 

Purely behavioral 

Often in Simulink, MATLAB, 

Modelica, Simscape, Easy5 

Model-based 

 Pros: 

□ Vast history of model-based results 

(reasoning, control, diagnosis, 

prognosis) 

□ Well established modeling languages 

and tools (Matlab, Modelica, Simulink, 

OpenModelica) 

□ Support for both causal (input-output 

maps) and acausal (physics-based) 

models 

□ Explainability (can connect to particular 

components and physical processes)   

□ Require less data 
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Two Systematic Approaches to System Analytics 

Purely behavioral 

Often in Simulink, MATLAB, 

Modelica, Simscape, Easy5 

Model-based 

 Cons: 

□ Work well for specific classes of 

problems (e.g. linear systems) 

□ Does not always scale to complex 

systems 

□ Modeling complex systems can be 

expensive 

□ Requires deep expertise 

□ Models are not very accurate due to 

simplifying assumptions 
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Model-based methods 

How to benefit the from the combining the two approaches? 

1 2 3 4 5 

1 9 8 7 6 

Close Acceleration Constant 
velocity 

Braking Open 

Acceleration Constant 
velocity 

Braking Ripples Close 

Purely data-driven Purely behavioral 

Often in Simulink, MATLAB, 

Modelica, Simscape, Easy5 

Hybrid 
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MODELS 
MACHINE 

LEARNING 

MAKE USE OF SYSTEM PROPERTIES (REGULARITIES) 

THAT ARE INFORMED BY (PARTIAL) MODELS 
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System regularities 
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 Inverted pendulum control 

 

□ Pendulum stabilization when starting 

from two opposing angles 

 

□ The force needed to stabilize the 

pendulum when starting from a left 

angle can be used when starting 

from an opposing right angle by 

changing its sign 

 

Animation produced using a Modelica model 
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System regularities 
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 Inverted pendulum control: symmetric motion and control 
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System regularities 

 Robotics: symmetries in complex robot motion 

 

 

 

Animation produced using a Modelica model 
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System regularities 

 

 

 
 Quadrotor motion 

planning 

□ Using rotational 

symmetries we can 

generate a multitude 

of additional feasible 

trajectories from one 

initial trajectory 

 

 

 
Matlab generated animation 



21 

System regularities 

 Geometric symmetries 

□ Transformations that take a system trajectory and 

produce another system trajectory 

□ Can have discrete symmetries: 

□ Rotations at a fixed angle 

 

□ Parametrized symmetries  

□ Lie symmetries 

 

□ Can check for typical symmetries (scaling, 

translations, rotations) 

□ Can be learned from data 
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Leveraging system regularities for policy learning 

 Reinforcement learning: 

□ Area of machine learning and control that 

tells us what actions (controls) should we 

take when interacting with an 

environment to maximize some reward. 

 

□ Suitable for incomplete, or model free 

case (or when other methods fail) 

 

□ Requires large amount of data 

(experience) to learn the best policy 
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Leveraging system regularities for policy learning 

 Symmetry enhanced reinforcement 

learning: 

□ Use geometric symmetries to augment 

the training data set used for policy 

learning 

□ Using a discrete symmetry can double 

the size of the training data set 

□ More symmetries … more data 

 

Policy 

Policy* 
Symmetry 

map 

Experience* 

Experience 
Policy 

update 

Policy** 

Policy 

update 
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Leveraging system regularities for policy learning 

 Smaller number of failures (faster 

convergence) 

 Higher rewards 

 Less uncertainty 

 

 

 Inverted pendulum example: 

□ State-space discretization: 7 points for the 

positions, 2 points for the velocity, 8 points 

for the angle, 2 points for the angular velocity 

□ Action space: 

 

Standard reinforcement algorithm 
Symmetry enhanced 

 reinforcement algorithm 

Training with symmetry use Training without symmetry use 
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MODELS 

MAKE USE OF MACHINE LEARNING TOOLS 

(ALGORITHMS) TO LEARN (PHYSICAL) MODELS 

MACHINE 

LEARNING 
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CAUSAL VS. ACAUSAL MODELS 

 ACAUSAL MODELS 

□ There is no clear notion of input and outputs 

□ Behavior described by constraints between variables  

 CAUSAL MODELS 

□ Output is completely determined by the current and 

past inputs, states and outputs 

□ Typical in machine learning, control and signal 

processing 
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LEARNING PHYSICAL MODELS IN PARTIALLY KNOWN 
SYSTEMS 

 Learn a model that fits the data 

 What representation? 

 How can I make sure it makes sense? 
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LEARNING PHYSICAL MODELS IN PARTIALLY KNOWN 
SYSTEMS 

 What representation? 

□ Parametrized constraint equation: 

 

 How can I make sure it makes sense? 

□ Impose a priori feasibility constraints on 

parameters (component does not generate 

energy, e.g., passive) 
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LEARNING PHYSICAL MODELS IN PARTIALLY KNOWN 
SYSTEMS 

 What representation? 

□ Parametrized constraint equation: 

 

 How can I make sure it makes sense? 

□ Joint learning of best parameter and their 

feasibility space (optimization problem with 

unknown constraints) 
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LEARNING PHYSICAL MODELS IN PARTIALLY KNOWN 
SYSTEMS 

feasibility space 

 Strategy for joint learning of parameters and their constraints: 

□ explore-exploit 



31 

LEARNING PHYSICAL MODELS IN PARTIALLY KNOWN 
SYSTEMS 

 How do I learn the feasibility space? 

□ Train a classifier 

 

 

 

 

 

 Current point 

Unfeasible hyperplane 

Feasible hyperplane 

Optimization step 

Simulation fails 

Update separation between  

feasible and unfeasible sets 

□ Use the model simulator to label points  
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LEARNING PHYSICAL MODELS IN PARTIALLY KNOWN 
SYSTEMS 

 What you would expect to learn? 

□ At least a local separating hyperplane 

 

 

 

 

 

 

Powell Simplex Quadratic programming 
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LEARNING PHYSICAL MODELS: OTHERS IDEAS 

 Build “neural network” like representations 

 

 

 

 

 

 
Neural network cell: 

Linear part + activation 

function (nonlinear)  

 

 

 

 

Nonlinearities in the damper and springs 

Acausal neural network cell 
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LEARNING PHYSICAL MODELS: OTHERS IDEAS 

 Build “neural network” like representations 

 

 

 

 

 

 

□ Need to add boundary conditions 

□ Much more difficult to train  

□ forward propagation needs to simulate a dynamical system 

□ backward propagation require computation of gradients 
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LEARNING PHYSICAL MODELS: OTHERS IDEAS 

 Discovering Hamiltonians, Lagrangians and other laws of 

geometric and momentum conservations: 

□ Symmetries and invariants underlie almost all physical law 

□ Use of genetic algorithms (the main challenge is avoiding trivialities) 

 

 

 

 

Hamiltonian 

M. Schmidt, Hod Lipson, “Distilling Free-Form Natural Laws from Experimental Data,” Science Magazine  
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Where we are today 
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current focus 
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What’s next… 

□ Seamless integration between model-based and 

data-driven methods 

 

□ Explainable AI (what are we learning?) 

 

□ Assured AI (what can we guarantee?) 

 

□ Design use cases 

 


