Statistical Models for Discovering Knowledge from Relational Data

Iku Ohama

Panasonic

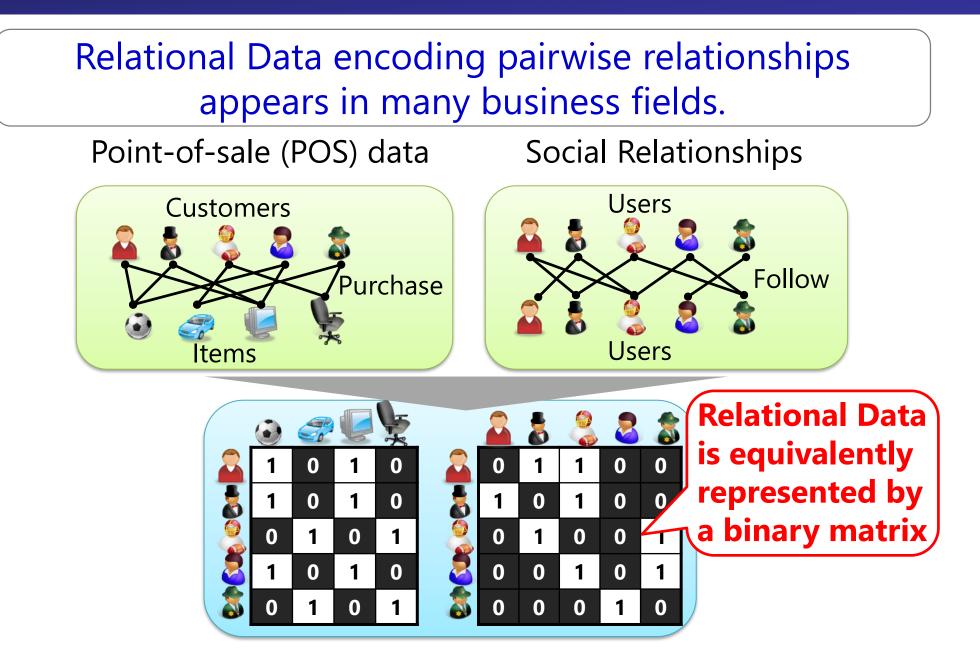
JAFOE18@Tsukuba International Congress Center, June 18-20, 2018

Background

Nowadays, data analysis is a very important technology for business to provide better UX.

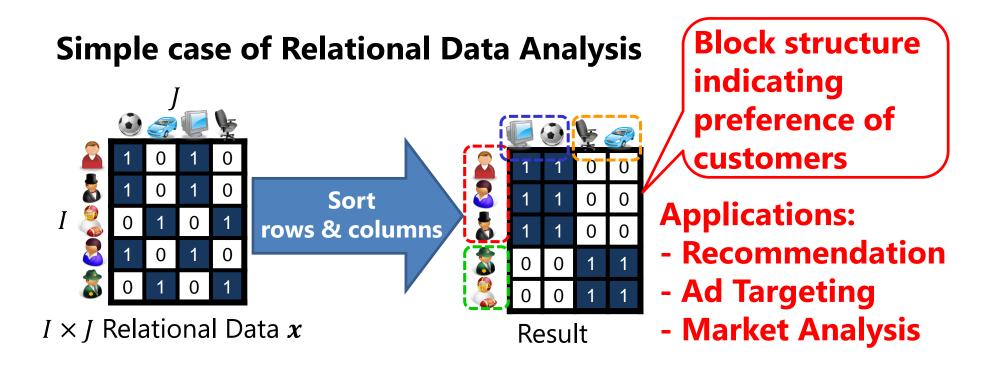
A key technology underlying such intelligent systems is Relational Data Analysis.

What is Relational Data?



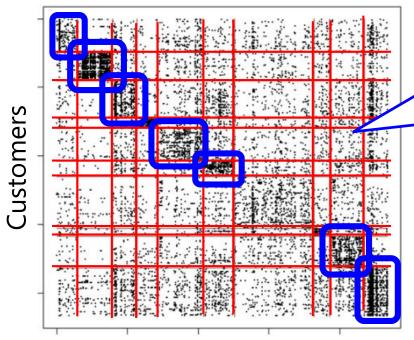
Relational Data Analysis

A major motivation behind analyzing relational data is to discover significant interaction patterns.



Example

Recommender system for an E-commerce business.



You can find pairs of customer group & item group that sell well.

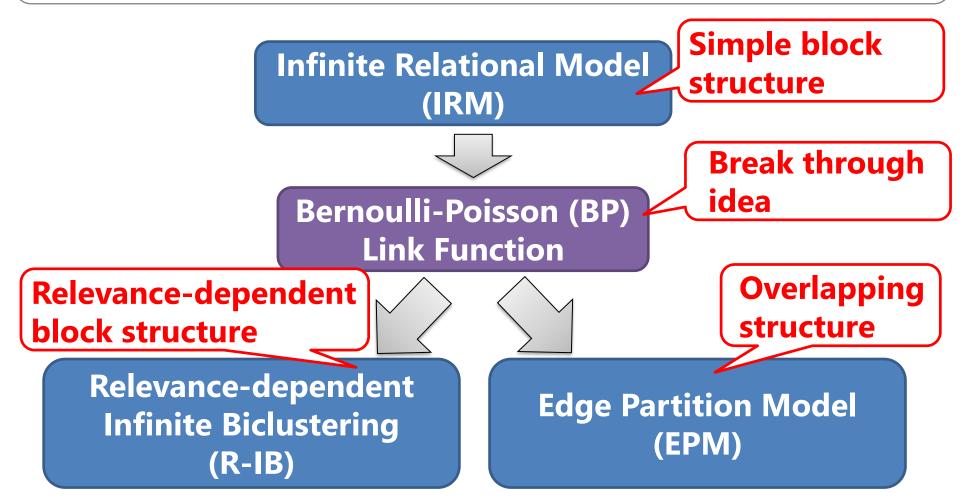
We can increase total sales by highlighting the items those are strongly related to each target customer.

A result obtained from purchase records on EC site

> Relational Data Analysis is a key technology for industries in Al era.

Overview of my Talk

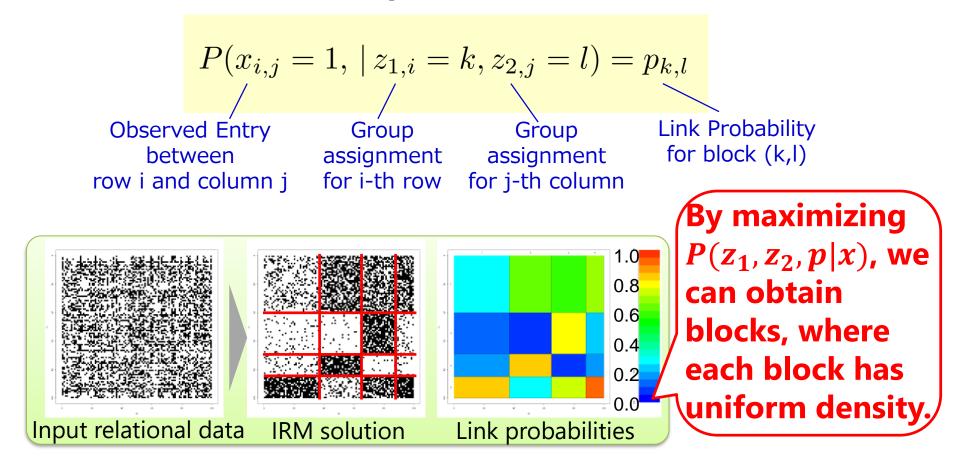
Statistical machine learning models for discovering advanced structure from relational data.



The Infinite Relational Model (IRM) [Kemp+, AAAI06]

A well-known statistical model that extract hidden block structure from noisy real-world relational data.

Model description of the IRM

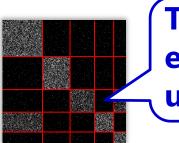


Drawbacks of the IRM

The IRM is not acceptable in real-world data analysis.

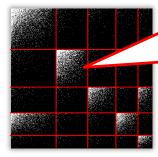
Observation model of the IRM

$$P(x_{i,j} = 1, | z_{1,i}, z_{j,2}) = p_{k,l}$$



The IRM assumes each block has a uniform density.

1. Relevance-dependent Blocks 2. Overlapping Structure



Both active and passive users exist in same community.

(e.g., mail transactions within a SNS community)

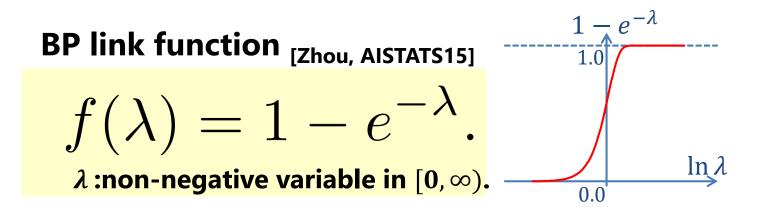
Some users might belong to multiple groups.

Efficient models for capturing such advanced structure have not been developed for a long time.

Bernoulli-Poisson Link Function [Zhou+, AISTATS15]

Key Idea: Bernoulli-Poisson Link Function

Modeling link probability using Bernoulli-Poisson (BP) link function.



BP link function enable us to define link probabilities using non-negative parameters.

Multiplicative Property of BP Link Function

The parameter λ can be straightforwardly extended to product of multiple parameters.

$$f(\lambda_1\lambda_2) = 1 - e^{-\lambda_1 \times \lambda_2}$$
Factor 1 Factor 2

Examples of prob. density

We can easily model the effect of multiple factors for a link probability.

Additive Property of BP Link Function

Sum of multiple parameters also have a useful meaning.

$$f(\lambda_{1} + \lambda_{2}) = 1 - e^{-(\lambda_{1} + \lambda_{2})}$$

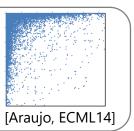
= 1 - e^{-\lambda_{1}} \times e^{-\lambda_{2}}
= 1 - (1 - f(\lambda_{1}))(1 - f(\lambda_{2})).
$$p(x = 0 | f(\lambda_{1})) \quad P(x = 0 | f(\lambda_{2}))$$

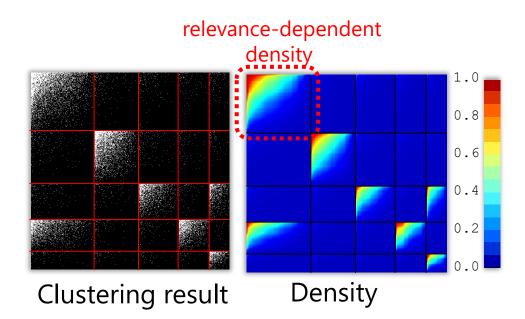
We can easily model the interaction of multiple factors with probabilistic OR manner.

Relevance-dependent Infinite Biclustering (R-IB) [Ohama+, IJCAI17]

Motivation

Real-world relational data often have relevance-dependent block structure.

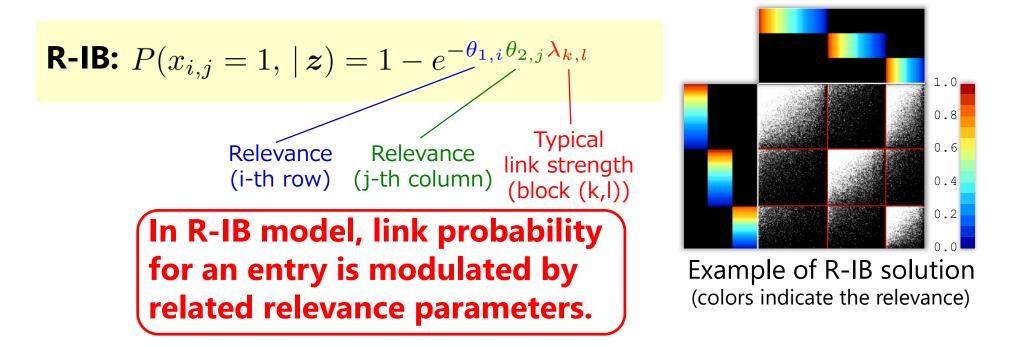




We can naturally extend the IRM so that it can capture the relevance-dependent block structure.

Relevance-dependent Infinite Biclustering (R-IB)

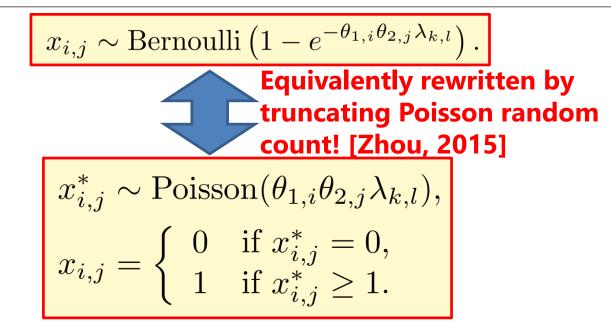
The key strategy is to define a link probability by BP link function with product of three nn-parameters.



R-IB can simultaneously estimate the block structure and relevance values for each row and column object.

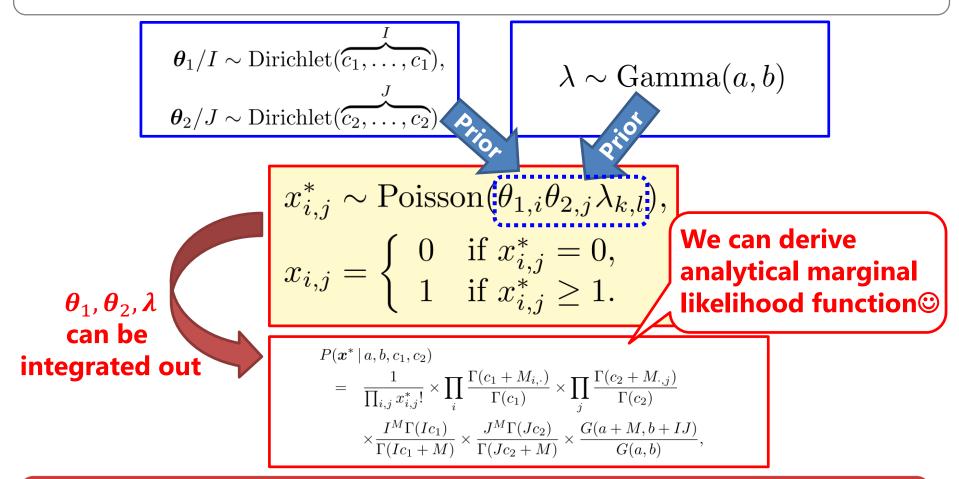
Remarkable Property of R-IB Inference

Most of parameters of the R-IB can be integrated out.



Remarkable Property of R-IB Inference

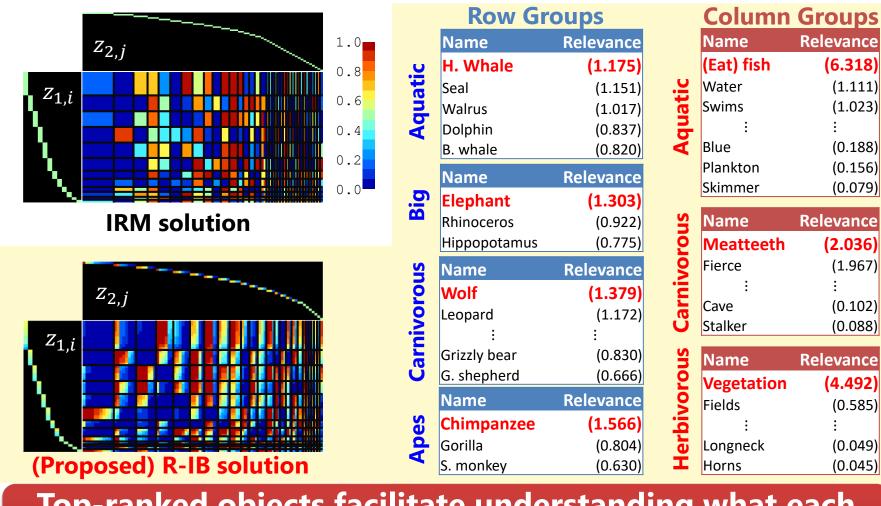
Most of parameters of the R-IB can be integrated out.



Inference for R-IB can be efficiently performed by optimizing only remaining parameters $z_1 \& z_2 \odot$

Experimental Result using Animal Dataset

Relationships between 50 mammals & 85 attributes



Top-ranked objects facilitate understanding what each group means 🙂

Relevance

(6.318)

(1.111)

(1.023)

(0.188)

(0.156)

(0.079)

(2.036)

(1.967)

(0.102)

(0.088)

(4.492)

(0.585)

(0.049)

(0.045)

Relevance

Relevance

Quantitative Results

Link prediction accuracy (AUC of precision-recall curve)

Dataset	IRM	RDIRM	R-IB	
Animal	0.8106 ±0.0356	0.7515±0.0525	0.8023±0.0255	The R-IB indicated
Enron08	0.2736±0.0693	0.2044±0.0482	0.2885 ±0.0741	better link prediction
Enron09	0.2710±0.0488	0.2129±0.0447	0.2964 ±0.0546	accuracy especially
Enron10	0.3519±0.0398	0.3100 ± 0.0327	0.3810 ±0.0421	for larger datasets.
MovieLens	0.4098 ± 0.0062	0.4130 ± 0.0061	0.4473 ±0.0058	for larger datasets.

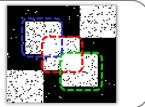
Computational Efficiency (# of Learning Epochs / 5 min.)

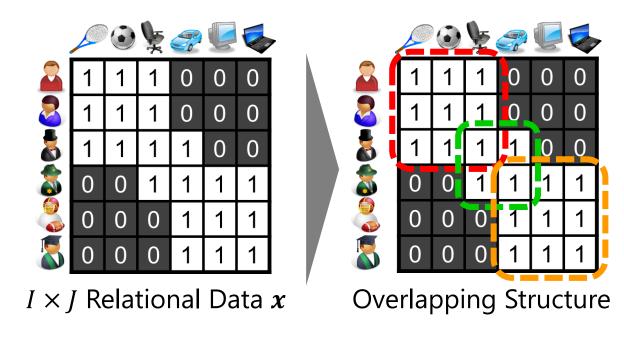
with better computational efficiency ©

Gamma Process Edge Partition Model (EPM) [Zhou, AISTATS15] [Ohama+, NIPS17]

Motivation

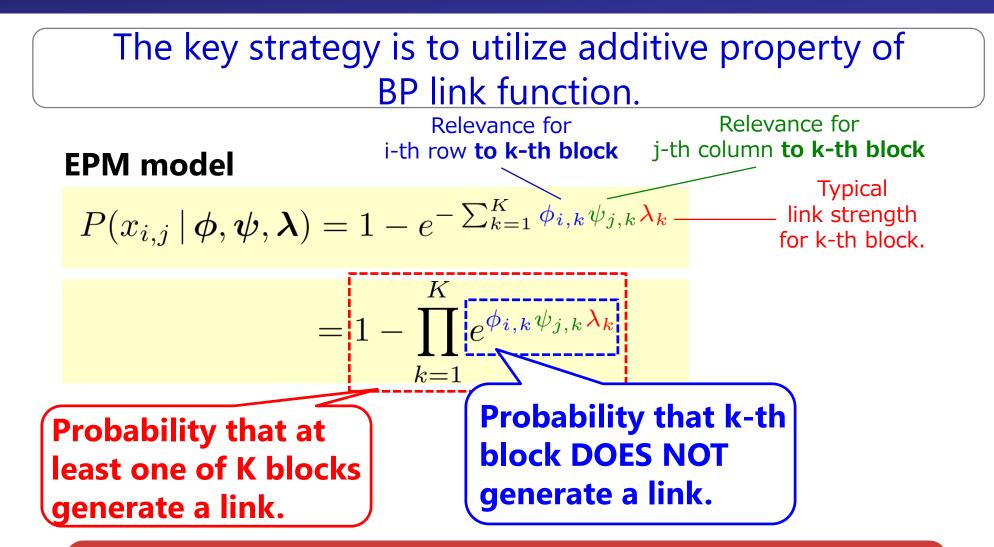
Real-world relational data often have overlapping block structure.





BP link function is also useful for developing relational model for overlapping structure.

Gamma Process Edge Partition Model (EPM)



EPM can capture overlapping block structure with probabilistic OR manner.

Efficient Inference for the EPM

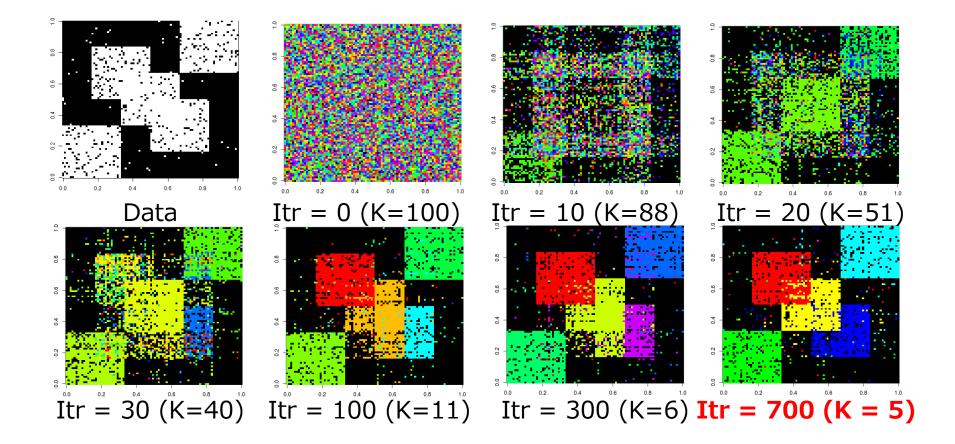
Similar to the R-IB, model parameters of the EPM can be integrated out.

Marginal likelihood function for the EPM

 $P(\boldsymbol{m}, [\boldsymbol{z}])_{\infty} = \prod_{i=1}^{I} \prod_{j=1}^{J} \frac{1}{m_{i,j,\cdot}!} \times \prod_{k=1}^{K_{+}} \frac{\Gamma(I\alpha_{1})}{\Gamma(I\alpha_{1} + m_{\cdot,\cdot,k})} \prod_{i=1}^{I} \frac{\Gamma(\alpha_{1} + m_{i,\cdot,k})}{\Gamma(\alpha_{1})}$ $\times \prod_{k=1}^{K_{+}} \frac{\Gamma(J\alpha_{2})}{\Gamma(J\alpha_{2} + m_{\cdot,\cdot,k})} \prod_{j=1}^{J} \frac{\Gamma(\alpha_{2} + m_{\cdot,j,k})}{\Gamma(\alpha_{2})} \times \gamma_{0}^{K_{+}} \left(\frac{c_{0}}{c_{0} + 1}\right)^{\gamma_{0}} \prod_{k=1}^{K_{+}} \frac{\Gamma(m_{\cdot,\cdot,k})}{(c_{0} + 1)^{m_{\cdot,\cdot,k}}},$

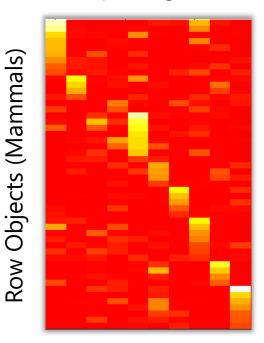
We no longer have to explicitly estimate the parameters for the EPM!

EPM can be inferred efficiently by optimizing its marginal likelihood function.



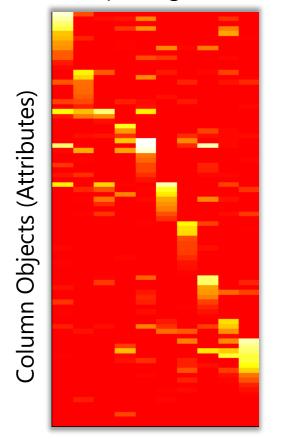
The EPM accurately discover overlapping block structure underlying the data.

Result on Animal Dataset



Group Assignment

Group Assignment



The EPM is more helpful for finding deeper insights from noisy real-world data.

Conclusions

- We addressed that discovering hidden structure from relational data is an important technical problem for many industries.
- We introduced Bernoulli-Poisson (BP) link function, which is a great idea to capture advanced structure underlying the data.
- We presented two novel relational model:
 - R-IB for relevance-dependent block structure
 - EPM for overlapping structure
- Using the BP modeling to bridge the statistical modeling and deep neural networks is a promising aspect for future work.

Acknowledgement

- Prof. Hiroki Arimura (Hokkaido Univ.)
- Assoc. Prof. Takuya Kida (Hokkaido Univ.)
- Lecturer Issei Sato (Univ. of Tokyo)

Thank you for your kind attention