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Giving a machine the ability to learn, adapt, or repair itself are among the initial and most 
ambitious goals of computer science. A learning process uses information obtained during one 
interaction with its environment to improve its performance during future interactions. We focus 
on two learning results: models and policies. Models help us to make sense of our world. They 
provide a framework or structure to help us understand a large or complex concept. They enable 
us to analyze it, discover its weakness and improve it. Policies are a set of actions that enable a 
system achieving a set of objectives. Learning processes are enabled by algorithms such as 
machine learning algorithms. Machine learning algorithms are effective tools in a variety of 
applications in signal and information processing applications. Such applications usually benefit 
from large amounts of data. Systems analytics tasks such as control, diagnosis or prognostic can 
also benefit from machine learning. Unfortunately it is often the case that large amounts of data 
are not available for this type of tasks. In this talk I will discuss two problems: how to learn policies 
for physical systems with little experimental data, and how to build  acausal models for physical 
systems.  
 
Learning models of physical systems or learning policies for optimizing some objective function 
relies on potentially large data-sets that describe the behavior of the system. When such data-
sets are not available, we look for alternatives to supplement the training data set. Such 
alternatives may include synthetic data originating from simulations, when a model of the system 
is available, or from experiments on the real system. Both alternatives bring their own challenges. 
For example, to build a physics-based model from first principles, we need information about the 
physical processes that govern the behavior of the system, and the set of parameters that control 
these physical processes. Unfortunately, it is usually the case that such parameters are not easily 
obtained. Often the components of a physical system originate from different manufacturers 
who are typically not keen to share technical proprietary information about their products. 
Performing experiments in the field may also not be feasible, since the operator of the system 
may not be willing to disturb the normal operation of deployed systems. We propose a third 
alternative that neither involves model simulations, nor performing experiments.  
 
Our approach is based on using available data as a seed for generating a new source of synthetic 
data that describes the behavior of the system. In particular, we apply a transformation to a time 
series describing a trajectory of the system, and obtain a different time series that describes 
another feasible trajectory. This is called symmetry, and it represents a function that maps a 
trajectory to one or many feasible trajectories. The number of additional trajectories depends on 
the symmetry type. In the case of discrete symmetries, one additional trajectory can be 
generated. In the case of parameterized symmetries, theoretically, we can generate infinitely 
many. Finding symmetries is a rather challenging task. In the case of physical systems, we can 
look for possible symmetries such as rotation, translation or scaling. Checking whether a map is 
a symmetry requires some knowledge about the system. We can check if a map is a symmetry by 
using qualitative models of physical systems induced by the physical laws governing their 
behavior. By leveraging the geometric properties of physical systems such as symmetries we 
demonstrate how to improve reinforcement algorithms used for policy learning to deal with 
limited experimental data. 



 
Machine learning algorithms usually produce input-output maps that hide information about the 
physical system that generated the data. It other words we lose explainability. This property is 
very significant in diagnosis and prognostics applications. Explainability is preserved though in 
physics based model. In the second part of the talk we show how we can learn acausal models of 
physical components in partially known systems. An acausal system is composed of variables 
attached to its components and relations between them. The relations are induced by the 
parameterized constitutive equations and the connections between components. The 
parameters of the constitutive equations are usually constrained within some feasibility set. Our 
approach is based on the following steps: (i) we select a parametric mathematical model for the 
constitutive equations; (ii) we learn the parameters and a representation/model of the 
parameter constraints. For the latter, we use an explore-exploit strategy, where in the beginning 
we focus on exploration to learn the constraints representation. Later, as the constraints 
representation becomes more informative, the focus is shifted towards finding the best feasible 
parameters of the constitutive equations. We use machine learning inspired models such as 
classifiers to represent the feasibility constraints. Feasible component models ensure 
simulatability of the overall system model. This is a necessary condition for learning the 
component parameters. It also ensures reusability: when the model of the physical component 
is used in a different configuration, the real and simulated behaviors must be similar. An 
alternative to constraint learning is proposing parametrized components model that are 
inherently feasible. We use the passivity notion to generate templates for feasible component 
models and constraints for their parameters. Having a representation for parameter constraints 
serves to: decrease the complexity of the search; provide a good initial condition when new data 
is available for refining the component's parametric model and the constraints representation; 
enable a physical interpretation of the component model. 
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Physical systems: entities that can be separated from their environment by means of conceptual 
limits. They interact with their environment, which results in observable changes over the time.  
 
Models: representations of systems used to answer questions via analysis and simulation. They 
can describe physical, biological or information systems.  
 
Acausal models: models (abstractions) of physical systems. They are composed of variables and 
relations between them. The variables are functions of time to observable quantities. The 
relations act as constraints between the values variables take at each instant Models interact 
through constraints between some of their variables. 
 
Symmetries: maps that given a trajectory of the system variables produce another trajectory.  
 
Reinforcement learning: area of machine learning concerned with how software agents ought to 
take actions in an environment so as to maximize some notion of cumulative reward. 
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