

Perovskite/Silicon Tandem Solar Cells and Modules

Bernd Rech¹, Daniel Amkreutz¹, and Steve Albrecht² Helmholtz-Center Berlin ¹Institute for Silicon-Photovoltaics ²Young Investigator Group Perovskite Tandem Solar Cells

Many thanks to my colleagues at HZB, cooperation partners and within the FVEE the discussions in the Framework of the ESYS project, University of Ljubljana, colleagues from EPFL and University of Oxford

2017 EU-US Frontiers of Engineering Symposium, Davis, CA, US, November 16 th, 2017

The Global Challenge

Noah's ark 2050 (artist's impression, courtesy of Lisa, Emilia and David)

PV today and tomorrow

from a niche technology to pillar of energy supply

Wafer based and thin film crystalline silicon

The working horse of PV c-Si on glass – an example from research

- High efficiency perovskite solar cells perfect partner for c-Si in tandem solar cells
- Conclusion

SOLAR

GLOBAL HORIZONTAL IRRADIATION

- Vast global potential
- Dramatic cost reductions (international bids down to 3 \$cent/kWh)
- Further strong cost reduction expected
- PV is still a new comer in the energy sector
- To impact/fight climate change huge growth of PV over decades required
- Improved and new technologies are needed see VDMA PV roadmap

Perspectives by New Technologies

@ optimum working conditions for chemical processes!

• **PV today and tomorrow** from a niche technology to pillar of energy supply

Wafer based and thin film crystalline silicon
The working horse of PV
c-Si on glass – an example from research

 Low cost – high efficiency mulitjunction solar cells prospects and challenges of perovskite solar cells

Wafer Based Crystalline Silicon

50 years manufacturing experience

- monocrystalline
- multicrystalline

Laboratory cell efficiency:

23% various approaches
(world record lab cell: 26.6 %)

Commercial Module Efficiencies:

16 - 20%

Source: SIMTEC/ FHG ISE

Silicon Heterojunction Baseline

4 cm² solar cells on 5-inch Cz-Si wafer

239 cm² solar cell on 6-inch Cz-Si

IBC solar cell with photolithography

Cell area	η	V _{oc}	j _{sc}	FF
(cm²)	(%)	(mV)	(mA/cm²)	(%)
1 (da)	23.2	713	41.4	

Stang C., Korte L. et al., Solar RRL **1** (2017) 1700021 Stang C., Korte L. et al., to be published

Cell area FF **V**_{oc} **J**_{SC} ŋ values (cm²)(%) (mV) (mA/cm²)(%) median **22.3** 728 38.3 79.8 4 (da) busbars less **22.6** 730 best 38.2 81.0 239 (t) 5 busbars best **20.6** 722 36.0 79.3

L. Mazzarella et al., 44th IEEE PVSC, Washington 2017, submitted to J-PV A. Morales-Viches et al., 33rd EUPVSEC, Amsterdam 2017 (2.AV.3.3)

> Competence Centre Thin-Film- and Nanotechnology for Photovoltaics Berlin

New Materials for c-Si: Perfect Interfaces, Novel Heterojunctions

World record: 26,6 % a-Si:H/c-Si heterojunction back contact cell Yoshikawa et al, Nature Energy 2, 17032 (2017)

25.8% for Topcon concept Team around S. Glunz Presented at FVEE conference

20,2% with organic emitter J. Schmid et al. ISFH presented at EU-PVSEC 2016

Beyond classical doping:

carrier selective contacts

MoOx, WOx, TiOx, organic semiconductors...

Efficient silicon solar cells with dopant-free asymmetric heterocontacts J. Bullock et al. Nature Energy 1 15031 (2016)

Challenges in Silicon PV Technology

- Reduction in CO₂ emissions necessary
- No technology available to cut wafers << 100 mm
- LPC-Si as bottom up approach

Precursor Deposition & Crystallisation

ενοηικ

high rate evaporation (PVD) PECVD

T. Sontheimer et al. Adv. Materials Interfaces, (2014) proof of principle

and subsequent crystallization

D. Amkreutz et al. Prog. Photovolt. Res. Appl. 19, 937 (2011)

J. Dore et al., IEEE Journal of Photovoltaics 4, 33 (2014)

General Properties

- Wafer equivalent morphology
- Low oxygen concentration (10¹⁸cm⁻³)
- Low carbon concentration (10¹⁷cm⁻³)
- High carrier mobilitiy
- Glass:silicon bond
- Fast & scaleable process

J. Haschke, D. Amkreutz, B. R., Japanese Journal of Applied Physics 55, 2016

Process	Wafer Si	c-Si on glass
energy	120 μm	20 μm
Σ (MJ/m ²)	134	37

- Material Quality approaching multi c-Si
- 16 % efficiency on very small areas
- "Between" wafer & thin film technology

Thin Si remains an important challenge for reduction of costs/energy demand

PV today and tomorrow

from a niche technology to pillar of energy supply

Wafer based and thin film crystalline silicon
The working horse of PV
c-Si on glass – an example from research

 Low cost – high efficiency mulitjunction solar cells prospects and challenges of perovskite solar cells

Perovskite the "Hype Material"

http://www.med.upenn.edu /chbr/documents/tr_scienti fic_minds_online_final.pdf

SCIENTISTS WITH MULTIPLE HOT PAPERS

FIELD

Genomics

19

Christopher J. Murray

Gad Getz

S. Albrecht & B. Rech, Nat. Energy 2017

- Multi-junction PV (tandem/triple) can provide efficiencies surpassing todays limits.
- New material class of metal-halide perovskites provides a unique opportunity

Applications beyond PV: conversion of solar energy into chemicals, Lasers, LEDs and other optoelectronic devices

Perovskite Based Solar Cells

Metal-organic perovskites showed that there are **surprising** options for **new materials**!

Opportunities & Challenges

More knowledge driven development possible?

c-Si / Perovskite Tandem Cells Zentrum Berlin Perovskite c-Si c-Si 1.8 1.8 1.6 1.6 thermalization ~ 35% thermalization <20% Irradiance [W/(m²nm)] Irradiance [W/(m²nm)] 1.4 1.4 1.2 1.2 1.0-1.0 0.8-0.8 below below

0.6 0.4

0.2

0.0

2000

usable

energy

500

Wavelength [nm] High loss from thermalization

band-gap 20%

1500

High energy photons are absorbed by perovskite - converted at a high voltage

band-gap 20%

1500

2000

- reduced losses from thermalization

1000

Wavelength [nm]

- Infrared photons are transmitted into c-Si
 - cover a wide spectral range of absorption

0.6

0.4

0.2

0.0

usable

energy

500

1000

Efficiency: 19.9 %

- Flat Si heterojunction no texture!
- ITO as recombination layer
- MoO₃ between spiro-OMeTAD and top ITO
- Active area defined by ITO and aperture

S. Albrecht et al., Energy & Environmental Science 2016

Band-Gap Optimization: Cesium!

SOLAR CELLS

A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells

David P. McMeekin,¹ Golnaz Sadoughi,¹ Waqaas Rehman,¹ Giles E. Eperon,¹ Michael Saliba,¹ Maximilian T. Hörantner,¹ Amir Haghighirad,¹ Nobuya Sakai,¹ Lars Korte,² Bernd Rech,² Michael B. Johnston,¹ Laura M. Herz,¹ Henry J. Snaith^{1*}

- Photostable band-gap
- Tunable perovskite for tandem cells

- Optimized architecture, light trapping
- Optimized Perovskite band-gap of 1.68 eV
- Potential for over 30% efficiency

Jäger, Rech, Albrecht et al., EUPVSEC 2017

Science 2016

Perovskite Solar Cells for Space

Irradiated perovskite solar cells with high energy (68MeV) protons

- Perovskite solar cells are radiation hard
- Self-Healing of induced defects after Irradiation

in cooperation with University Salerno

¹ F. Lang, et al., Adv. Mater. **28**, (2016)

- Long-lifetime, stable, including Pb-free alternatives
- Scalable low-cost processes for efficient devices
- Multi-junction solar cells & modules (Si/Pero, CIGS/Pero, Pero/Pero)
- Sustainability, environmental impact & implementation into energy system

Research approach along entire value chain (materials \rightarrow system integration) covering complete development cycle

PV has emerged from a **niche** technology to a **global** industry

Wafer baser crystalline silicon PV dominates the market but is intrinsically limited in efficiency as a single junction technology.

- Energy demand for Si wafer production is high go thin!
- Multi-junction-technology

The development of new PV technologies relies on breakthroughs in **material science**, processing and device integration.

- Efficiency potential of novel hybrid materials has to be transferred into stable efficiency
- Prerequisite: Scalability of processes and equipment

Cheap & efficient & stable & environmentally benign is a must!