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The brain-machine interface (BMI) is a novel technology that holds great potential to aid large 
numbers of people with sensory, motor and cognitive disabilities. The goal of cortically 
controlled BMIs is to reliably, accurately, and robustly convey enough motor control intent from 
the central nervous system (CNS) to drive multi-degree-of-freedom (DOF) prosthetic devices by 
patients with amputated, paralyzed, or otherwise immobilized limbs for long periods of time 
(decades). To achieve this goal, two main challenges remain: 1) how to make viable neural 
interfaces that last a lifetime, and 2) skillful control and dexterity of a multi-DOF prosthetic 
device comparable to natural movements. In a BMI system, neural signals recorded from the 
brain are fed into a machine that transforms these signals into a motor plan. This is the subject’s 
“intention of movement”, which is then streamed to the prosthetic device. A closed control loop 
is established by providing the subject with visual and sensory feedback of the prosthetic 
device. BMIs provide also a framework for examining basic neuroscience questions, especially 
those related to the understanding of how neural plasticity relates to the acquisition and 
consolidation of skills.  
 
In the first part of this talk I will postulate that achieving skillful, natural control of a multi-degree-
of-freedom BMI will entail synergizing two different types of adaptation processes: natural (brain 
plasticity) and artificial (decoder adaptation), as well as providing realistic sensory feedback 
from the prosthetic device. I will present recent work showing that 1) neuroplasticity facilitates 
consolidation of neuroprosthetic motor skill in a way that resembles that of natural motor 
learning; 2) corticostriatal plasticity is necessary for neuroprosthetic skill learning, and 3) closed-
loop decoder adaptation (CLDA) techniques can expedite the learning process by adapting the 
decoder parameters during closed-loop BMI operation (i.e., while the subject is using the 
BMI).  The design process of a CLDA algorithm requires important decisions not only about 
which parameters of the decoder should be adapted and how these should be adapted, but also 
when, (i.e. how often), as the rate at which the decoder changes can influence performance. We 
believe that BMI systems capable of exploiting both neuroplasticity and CLDA will be able to 
boost learning, generalize well to novel movements and environments, and ultimately achieve a 
level of control and dexterity comparable to that of natural arm movement. 
 
Next we will discuss how to use BMIs to study skill learning and consolidation. In addition to 
holding great therapeutic potential as assistive and rehabilitation technology, BMIs provide also 
a powerful framework for examining basic neuroscience questions, especially those related to 
the neural correlates of learning behavior as it offers researchers the unique opportunity to 
directly control the causal relationship between neuronal activity and behavioral output. In 
particular, we focus on the question of how neuroplasticity relates to the acquisition and 
consolidation of skills. The importance of this question is paramount as it impacts both brain 
function and dysfunction. We examine the question of how a task-relevant neural population 
explores and consolidates spatiotemporal patterns supporting neuroprosthetic skill learning?  In 
the early stages of motor skill learning, movements are variable from attempt to attempt.  This 
variability can be beneficial to learning, permitting the motor system to explore actions and their 
consequences.  Gradually movement variability decreases as the motor system consolidates 



particular movements which lead to success.  Neurophysiological motor learning studies have 
found neural activity in various species and brain areas follows a similar trend, exhibiting high 
variability in early training and reducing variability as particular activity patterns are consolidated 
in late training.  These studies have focused on overall changes in neural variability. Given the 
large dimensionality of possible activity patterns available to a neural population, and the 
possibilities for interaction among cells, it is critical to understand how different sources of 
neural variability contribute to motor learning. If the variability in a neural population is driven 
mostly by private independent inputs, then each neuron produces independent activity, and the 
population fully explores high dimensional activity space.  On the other hand, if cells receive 
coordinating inputs (input activity which drives multiple cells simultaneously), then activity 
becomes constrained to a co-activation manifold. 

Because the motor system is a distributed and redundant dynamical system, with parallel 
degenerate pathways and many more neurons than muscles, a fundamental challenge of 
neuroscience has been to ascertain the causal relationship between observed neural activity 
patterns and motor output. This apparent complexity and degeneracy makes the question of 
how neural plasticity changes movement production difficult to answer.  We therefore took 
advantage of a paradigm in which we could identify the output neurons that control behavior and 
identify the explicit transformation between output neuron activity and behavior.  We used an 
operant learning BMI paradigm in which stable recordings from ensembles of primary motor 
cortex neurons in macaque monkeys are fed through a constant mathematical transform 
(hereafter referred to as decoder) to transform neural activity into prosthetic movements. The 
BMI provided a closed-loop feedback system operating within the natural motor system, 
hereafter referred to as the “neuroprosthetic circuit”.  Under the condition of a fixed decoder and 
fixed neural population over training, subjects acquire proficient neuroprosthetic control which is 
stable and readily-recalled over days. This neuroprosthetic skill learning paradigm is uniquely 
advantageous to investigate how task-relevant neural populations explore and consolidate 
activity patterns that support skill learning.  By selecting the stable cells whose activity is fed 
through the decoder (hereafter referred to as “direct cells”), we define the direct cells to be task-
relevant.  By designing the decoder and task goals, we define a priori the neural activity space 
that is relevant for behavioral output as well as the possible activity patterns that can lead to 
success.  By holding the neuroprosthetic circuit fixed, we can investigate how variability from 
different sources in a task-relevant neural population evolves with training, contributes to the 
consolidated activity and neuroprosthetic patterns, and ultimately drives neuroprosthetic 
learning. 

We used Factor Analysis to model independent and coordinated sources of variability in a 
neuroprosthetic skill learning task, and revealed that population dynamics became more 
coordinated and low-dimensional with training.  We leveraged the decoder structure to interpret 
the observed changes in dynamics, finding that task-relevant coordinating input signals were 
consolidated.  Previous studies have shown that motor learning is accompanied by a decrease 
in total trial-to-trial neural variability. Here, we uncovered that private and shared sources of 
variability evolve differently over training.  While private variability is important early in training 
and decreases over training, shared variability slowly consolidates to produce faster and 
straighter movements. Hence, our findings describe neuroprosthetic skill learning as a process 
of spatiotemporal neural pattern consolidation whereby the strengthening of task-relevant input 
signals coordinates initially variable, high-dimensional activity. A greater understanding of the 
neural substrates of neuroprosthetic skill learning can provide insight into the mechanisms of 
natural sensorimotor learning as well as help guide the development of neurobiologically-
informed neuroprosthetic systems designed to aid people suffering from devastating 
neurological conditions. 



Finally, in the last part of the talk I will discuss the emerging field of "mind prosthetics", with 
applications to mental health. The current paradigm for the treatment of neuropsychiatric 
disorders, such as addiction and depression, relies heavily on pharmacological and behavioral 
therapies. This paradigm is inherently limited by its palliative rather than curative approach. 
Prospective corrective therapies must target the etiology of neuropsychiatric disorders and this 
approach can be realized using neurotechnologies that are capable of leveraging 
neurofeedback to construct targeted mechanisms that ameliorate pathological activity. BMI 
technologies are ideal for neuropsychiatric treatment therapeutics. In combination with new 
physiological biomarkers and animal models, future BMI neurotherapeutic devices will have the 
potential to cure people suffering from psychiatric and mood disorders. Towards this goal, we 
have developed a novel animal model for assaying correlates of acute anxiety and closed-loop 
strategies for mood modulation with strong anxiolytic effects. 
 
 
 


