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While the direct goal of biological modeling is to describe data, modeling ultimately aims 
to find ways of fixing systems and understanding systems’ objectives, algorithms, and 
mechanisms. Thanks to engineering applications, machine learning is a booming field 
that allows modeling data extremely well, typically without using explicit assumptions 
about the modeled system. Machine learning can typically better describe the data than 
biomedical models and thus provides both engineering solutions and an essential 
benchmark. It can also be a tool to aid understanding. Using examples from 
neuroscience, we highlight the contributions, both realized and potential, of machine 
learning. Machine learning is becoming easy to use and should be a critical tool across 
the full spectrum of biomedical questions. 
 
Introduction 
The goal of nearly all of computational biology is to numerically describe a system, 
which is often quantified as the explained variance. In some cases, we only care about 
the explained variance, e.g. if we need to make predictions. But in most cases, just 
describing the data successfully is not sufficient and there has been much discussion of 
such objectives in the neuroscience community1, 2. In some cases we want the model to 
inform how we can fix things; in other words we want it to predict what would happen if 
we did interventions. In some cases we want to understand the data as optimizing an 
objective. For example, we might ask if the intricate folds of the brain minimize wiring 
length3. In some cases we want to understand the system as an algorithm, e.g. which 
algorithms the brain uses to learn4. 
Probably most commonly, we want to 
understand underlying mechanisms. For 
example, we may want to know how action 
potentials are enabled by interactions 
between voltage dependent ion channels5. 
The typical model cares not only about 
numerically describing data, but also about 
other objectives of the researcher.  
 
So far, progress in the modeling field 
comes mostly from human insights into 
systems. People think about the involved 
components, conceptualize the system’s 
behavior, and then build a model based on 
their intuitive insights. This is being done for 
neurons2, molecules6, and the immune 
system7. Across biomedical research 
scientists are starting to use computational 
models to both describe data, and to 

 
Figure 1: The trend towards using machine 
learning for biomedical sciences: The use of 
machine learning (ML) in biomedical sciences 
is increasing. Publication data (blue) was 
collected from the Semantic Scholar website 
using the keywords "biomedical" and "machine 
learning." The patent data (red) was collected 
from Google Patents using the same keywords. 



specify the underlying principles. However, understanding such complex systems is 
extremely difficult, after all our intuition is bound to be incomplete in systems with many 
nonlinearly interacting pieces8. 
 
Machine learning, or more precisely supervised learning, is a radically different way of 
approaching modeling, and it relies on minimal human insight. At its heart, supervised 
machine learning assumes that the relationship between the measured variables and 
those to be predicted is in some sense simple9; it assumes things like smoothness, 
sparseness, or invariances. Typical supervised algorithms get vectors of features as 
inputs and produce predictions as outputs. Machine learning techniques then mostly 
differ by the nature of the simplicity of the function they use for predicting10. As opposed 
to assuming an explicit model about the relationship of variables, machine learning 
techniques rather assume simplicity.  
 
The field of machine learning is undergoing a revolution and has moved from a niche 
discipline to a major driver of economic activity over the last couple of decades. Indeed, 
the number of papers and patents in biomedical research has grown exponentially over 
the last decade (Figure 1). Progress in machine learning is revolutionizing speech-to-
text, web-search, and countless other areas of economical importance. The influx of 
talent into this field has led to massive improvements of algorithm performance, allowing 
computers to outperform humans at tasks such as image recognition11 and playing go12. 
These developments in machine learning promise to make it be an important tool in 
biomedical research. 
 
The time has come for machine learning to impact biomedical research 
There are many kinds of questions that can be answered well using machine learning 
techniques. In some cases we care about the predictions themselves, e.g. we may ask 
if a drug will cure a given cancer. In other cases, it sets a benchmark, e.g. how much 
worse is our human-thought-out model relative to what may be possible. In yet other 
cases machine learning may help us understand a system, e.g. by telling us if 
information is contained in a response or which variables are shared between  
components of a system. The breadth of potential uses of machine learning for 
biomedical research has not yet been realized. 
 
The standard use case for machine learning is prediction. A typical problem in medicine 
may be the detection of mood. We have measured data about everyday behaviors, e.g. 
when patients wake up or how much they exercise. We want to estimate how their 
mood is changing. Many algorithms have been used to solve such problems13. A typical 
problem in neuroscience is neural decoding14. We have measurements from the brain of 
a subject that cannot move its body. We want to estimate which movements the subject 
wants to do, so that we can have a robot execute this movement. Many algorithms have 
been developed to solve such problems15-17. General purpose machine learning tends 
to do extremely well18. Computationally similar problems exist all over biomedical 
research including cancer19, preventive medicine20,  and medical diagnostics21. In such 
problems, we do not care beyond the quality of the predictions. After all, that is what the 



application asks for. Many applications of machine learning in engineering only care 
about the typical error size. 
 
In many other cases, however, we do not just want to describe and predict data but we 
want to be able to produce models that we can understand and teach to our students. In 
that case, machine learning can still be extremely useful by providing a benchmark. A 
general problem when evaluating models is that it is hard to know how much of the 
model’s errors are due to noise and how much is due to the model being insufficient. 
Machine learning is generally good at making predictions, and could thus provide close 
to an upper bound for the models we produce ourselves. If a human-generated model 
does much worse than the machine learning benchmark, we might expect that we are 
missing important principles or that our modeling is misguided. If, on the other hand, a 
model based on human intuition is very close to the machine learning precision, we 
should be more convinced that the posited concepts are, indeed, meaningful. For 
example, when we predict mood on mobile phone data, we may build our model on 
psychological insights. Or when we describe how measured factors affect neural 
activities, we may use a linear-nonlinear-poisson model 22. However, how do we know if 
our model is meaningful or is missing important aspects? Machine learning 
benchmarking can answer those questions23.  Benchmarks are necessary for the 
interpretation of models. 
 
In yet other cases, machine learning can directly help understanding. One important 
question that is often being asked is if a system carries information about some 
variables. But we may not really know about the relation; it may be linear or nonlinear. 
In such cases machine learning allows asking if information is contained in a signal 
without us having to specify the exact nature of the relationship. Another important 
question is about the information shared between two parts of a system. For example 
we may ask which aspects of the world (high dimensional) is shared with which aspects 
of the brain (also high dimensional). Machine learning allows asking such questions in a 
well defined way24, 25. For many questions in biology, machine learning promises to 
allow new approaches to generate biological understanding. 
 
Machine learning is becoming a necessity for ever-growing datasets 
Datasets are rapidly growing and becoming more complex. In neuroscience, the 
number of simultaneously recorded neurons is growing exponentially26. Similarly, the 
amount of electronic health record data is increasing rapidly. In fact, the overall 
biomedical literature is equally growing extremely fast. At the same time, the complexity 
of datasets is rapidly increasing with modern datasets often being multimodal and 
multifaceted27. There are several ways in which these changes in datasets will produce 
new problems in modeling. 
 
First, humans are not very good at thinking about complex datasets. We can only 
consider a small hypothesis space. But in biology, as opposed to physics, we have 
good reasons to assume that truly meaningful models will be rather complex28. While 
humans will correctly see some structure in the data, they will simultaneously miss 



much of the real existing structure. It could be argued that it is nearly impossible for 
humans to intuit models of complex biological systems. 
 
Second, nonlinearity and recurrence makes modeling complex systems much harder28. 
In this regime, it is hard to both explain complexity and ensure your model will fail if the 
causal structure is dissimilar to your model. In the limit of full-cell interactions or full-
brain modeling, it seems implausible that we could design models that are poised at this 
delicate limit. 
 
Finally, in the case of the large complex systems that are typical in biology, a major 
problem is that we do not understand the space of meaningful models. We can 
construct many models that will explain some portion of the variance, but it does not 
mean these models actually explain the mechanism. Comparing models can thus be 
pointless, when the models being considered are outside the space of meaningful 
models. In other words, we are effectively comparing models we do not believe with 
other models that we do not believe. We may have doubts that science can advance 
meaningfully in this manner.  
 
Given all these arguments, we may believe that the typical non-machine-learning based 
approach to science that we learned from the physicists can only partially succeed. Any 
reasonably small number of principles can only describe some part of the overall 
variance, potentially a relatively small part. It is unclear how far the typical approach 
taken in biomedical research that draws on concepts of necessity and sufficiency can 
succeed at allowing us to understand the bulk of activity in complex interacting 
systems29. Machine learning covers a very different part of the space of relevant 
models. It has the potential to describe a very large part of the variance. At the same 
time, it has the drawback of being hard to communicate. Importantly, however, it covers 
a rather complementary part of the space of models and, as such, promises to become 
a central tool. 
 
The use of ML increasingly does not require specialist knowledge 
There are countless approaches in machine learning, certainly more than the typical 
biomedical scientist wants to know. Kernel based systems such as support vector 
machines are built on the idea of regulating model complexity10. Neural networks are 
built on the idea of hierarchical representations30. Random forests are built on the idea 
of having many weak learners31. One could easily fill books with all the knowledge that 
we have about machine learning techniques. However, using these techniques has 
become very simple. Training a machine learning technique basically just requires a 
matrix of training features and a vector of the known labels. As such, given the 
availability of the right software packages32 we generally only need a few lines of code 
to train any machine learning system. 
 
Moreover, techniques called ensemble methods obviate the need to even choose a 
single machine learning technique 33. The idea is that a system can run all machine 
learning techniques and then combine the predictions of these using yet another 



machine learning technique. Such approaches generally win machine learning 
competitions (e.g. kaggle.com). 
 
Furthermore, there is a new trend in machine learning that has developed rapidly over 
the last few years called automatic machine learning34. The idea is that most machine 
learning experts will do similar things when they approach machine learning. They will 
choose one of a number of methods (or all of them if they use ensembling). Then they 
will optimize the hyperparameters of those techniques. They may also optimize the 
feature representation. Long story short, while this can take a person a significant 
amount of time via trial and error, the pipeline is relatively standard and can be 
automated. And several new packages allow automating some or all of the process 
(e.g. https://github.com/automl/auto-sklearn, http://www.cs.ubc.ca/labs/beta/Projects/autoweka/, 
https://github.com/KordingLab/spykesML, https://github.com/KordingLab/Neural_Decoding). These 
developments are likely to pick up in speed over the next year or two making it less 
necessary for biomedical scientists to even know the details of the individual methods, 
freeing them to instead ask the real scientific questions that we want machine learning 
to answer.  
 
Examples of state of the art 
machine learning in 
neuroscience 
We want to go through two uses 
of machine learning approaches, 
predictions and benchmarking, 
using examples from 
neuroscience. 
 
A first example is neural 
decoding. In neural decoding we 
want to estimate what a subject 
wants to do based on brain 
activity, for example to allow 
them to move an exoskeleton 
with their thoughts. A standard 
approach in the field is still the 
use of simple linear techniques, 
e.g. the Wiener Filter. In the 
Wiener filter, all signals from the 
past up to a time horizon are 
linearly combined to predict the 
output. There has been recently a 
lot of interest in improving such 
approaches using modern 
machine learning. 
 
For many applications we just 

 
Figure 2: State of the art machine learning for neural 
decoding and encoding. Left, decoding, predicting state 
using signals from three brain areas using various machine 
learning techniques and the ensemble over them. Right, 
encoding, predicting spikes using signals from three brain 
areas. Data replotted with permission from 18, 23 

https://github.com/automl/auto-sklearn
https://github.com/KordingLab/spykesML


want to have good performance. To analyze how much extra mileage we get out of 
using standard machine learning, we implemented many different approaches. This 
included the linear Wiener Filter, the nonlinear extension called Wiener Cascade, the 
Kalman filter, nonlinear support vector machines, extreme gradient boosted trees, and 
various flavors of neural networks (Figure 2). Ultimately, the modern neural network 
based techniques, as should be expected, did very well18. The combination of all of the 
techniques using ensemble methods performed even better. The same general 
phenomenon was seen when decoding from a number of different brain regions. Thus, 
when solving engineering problems, using standard machine learning should be the 
starting point. 
 
In this sense, machine learning also sets a benchmark for other decoding approaches. 
When neuroscientists write decoding algorithms they are often inspired by their insights 
into the way the brain works35. However, without a comparison to modern machine 
learning, we cannot know if these insights work at all. As machine learning becomes 
automatic and easy to use, we argue that it should always be used as a benchmark for 
engineering applications. 
 
A second example is neural encoding, or tuning curve analysis. In this case, we have 
signals from a neuron or a brain region and we want to know how this signal relates to 
variables in the outside world. Neuroscientists often believe that such a characterization 
allows insights into the role of a neuron in computation8. Typically, the neuroscientist 
chooses a model (often implicitly) based on prior knowledge about the brain. 
Subsequently the average signal is plotted as a function of the variables in the outside 
world. This approach implicitly assumes a linear model. But could we do better using 
machine learning? 
 
For such applications it is impossible to know how good the tuning curve (encoding 
model) is at actually describing neural activity. In principle, input variables may affect 
the neuron’s activity in highly nonlinear ways. Machine learning allows us to test this 
hypothesis. Indeed, when we compared the generalized linear model (GLM)22, which is 
mostly linear, it performed considerably worse than neural networks or extreme gradient 
boosted trees (Figure 2). And again, the combination of all the methods using ensemble 
techniques yielded the best results. Interestingly, despite the fact that the space was 
rather low dimensional, GLMs performed poorly relative to modern machine learning. 
This may suggest that the tuning curves measured by neuroscientists are rather poor at 
describing neurons in real world settings. 
 
In this context, machine learning can conceptually contribute several aspects. First, it 
can detect that a variable is represented, even if there is no linear correlation. Second, it 
can set a benchmark that humans can strive for. Third, it offers a possibility of replacing 
the cartoon model that people have about neural computation with an, admittedly hard 
to interpret, complex alternative. 

 
Discussion 



The fact that machine learning is entering our toolbox has profound implications for all 
aspects of neuroscience and biomedical science in general.  
 
Machine learning also changes the objectives of data collection. In traditional 
approaches, measuring many variables is unattractive as, through multiple comparison 
testing corrections, we will be unable to say much about each of them. In machine 
learning the situation is different. Many variables improve predictions, even if we cannot 
know which variables contribute to this. But this is not just a vacuous statement about 
information processing. It really reflects the fact that the brain and other biological 
systems are not simple, with few interactions, but highly recurrent and nonlinear. The 
assumption of simplicity used in biology is usually only a fanciful, if highly convenient,  
illusion.   
 
Based on their intuitions, scientists are starting to fit rather complex models to biological 
data. Indeed, those complex models usually fit the data better than simpler models. 
However, a complex model based on a wrong idea may be able to fit the data extremely 
well. This issue is in some way negating the real advantage of interpretable models. A 
good fit does not mean that the model is right. For example, Lamarckian evolution 
explains a lot of data about species, and yet, it was based on a fundamentally 
misleading concept of causal transmission of traits. This problem affects human intuition 
based models. It is no problem for machine learning models that usually, by design, do 
not pretend to get at a meaningful causal interpretation.  
 
In the space of biomedical modeling, traditional modeling and machine learning cover 
opposite corners. Traditional modeling leads to models that can be compactly 
communicated and taught, while explaining only a limited amount of variance. Machine 
learning modeling explains a lot of variance, but is in its typical forms exceptionally hard 
to communicate. Those two frameworks can inform one another and both should be 
used to their maximal possibility. 
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