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Brain disorders such as dementia, epilepsy, migraine and autism are a major concern of the modern 

world. Despite the heavy economic burden they impose on the society, many of these disorders 

remain largely undertreated. Within this context, neural devices are increasingly being utilized to 

interface with brain, monitor and detect the neurological abnormalities, and trigger an appropriate 

type of therapy such as neuromodulation to restore normal function. A key challenge to enable such 

new treatments is to integrate state-of-the-art signal acquisition techniques, as well as efficient 

biomarker extraction and classification methods to accurately identify symptoms of various 

disorders, using low-cost, highly integrated, wireless and miniaturized devices.  

OVERVIEW: THERAPEUTIC NEURAL DEVICES  

The general block diagram of a closed-loop neural interface system is shown in Figure 1. The neural 

signals recorded by an array of electrodes (e.g. intracranial, scalp, or other types) are initially 

amplified, filtered and digitized. A feature extraction processor is subsequently activated to extract 

the disease-associated biomarkers. Upon abnormality detection, a programmable neural stimulator 

is triggered to suppress the symptoms of disease (e.g. a seizure or migraine attack, Parkinson’s 

tremor, memory dysfunction, etc.) through periodic charge delivery to the tissue. In addition to high 

sensitivity (true positive rate), sufficient specificity (true negative rate) and low latency, the 

abnormality detector device has to satisfy the safety, portability and biocompatibility requirements 

of the human body.  
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FIGURE 1 General block diagram of a closed-loop therapeutic system for detection and suppression of disabling 

neurological symptoms. 

Current and Future Directions 

The emerging field of neuroengineering uses engineering technologies to investigate and treat 

neurological diseases. Epilepsy has been one of the primary targets, along with movement 

disorders, stroke, chronic pain, affective disorders and paralysis (Stacey and Litt 2008).  

Approximately one third of epileptic patients exhibit seizures that are not controlled by medications. 

Neuromodulation offers a new avenue of treatment for intractable epilepsy. Over decades, research 

on epilepsy has led to fundamental understandings of brain function, with strong implications for 

other neurological disorders. In addition, due to severity of refractory epilepsy and the need for 

surgery, human tissue and epileptic EEG datasets are largely available. Therefore, the majority of 

therapeutic neural interfaces in literature have focused on extracting epileptic biomarkers for 

automated seizure detection (Shoeb et al. 2004; Verma et al. 2010; Shoaran et al. 2015).  

Spectral energy of neural channels in multiple frequency bands, as well as various time and 

frequency domain features have been used as potential seizure biomarkers. To improve the power 

and area efficiency in multichannel systems, a spatial filtering technique was proposed to precede 

the seizure detection unit (Shoaran et al. 2016). However, in the majority of existing devices, the 

classification of neural features is performed either remotely, or by means of moderately accurate 

thresholding techniques. A patient-specific Support Vector Machine (SVM) classifier was 



implemented by Yoo et al. (2013), where the classification processor contributes to a significant 

portion of chip area and power. To improve the accuracy of detection, resource-efficient on-chip 

learning is becoming an essential element of next generation implantable and wearable diagnostic 

devices. 

MACHINE LEARNING IN NEURAL DEVICES 

Conventional classification techniques such as SVMs and k-Nearest Neighbors (KNNs) are 

hardware intensive and require high processing power and large memory units to perform complex 

computations on chip (Figure 2).  

 

FIGURE 2 Schematic of common learning models as potential candidates for hardware implementation. 

Scalability Challenges  

Numerous studies show that a large number of acquisition channels are required to obtain an 

accurate representation of brain activity, and the therapeutic potential of neural devices is limited at 

low spatiotemporal resolution. Thus, it is expected that future interfaces integrate thousands of 

channels at relatively high sampling rates, making it crucial to operate at extremely low power. A 

small size of device is also critical to minimize implantation issues. 



Despite a substantial literature on machine learning, hardware-friendly implementation of such 

techniques is not sufficiently addressed. Indeed, even the simple arithmetic operations performed in 

conventional classification methods can become very costly with increasing number of channels. In 

addition, filter banks and in general, feature extraction units can be hardware intensive, particularly 

at higher frequencies associated with intracranial EEG. Extensive system-level design improvement 

is needed to meet the requirements of implantable device, while preserving the high-resolution 

recording capability.  

DECISION TREE-BASED CLASSIFIERS 

We present and evaluate a seizure detection algorithm using an ensemble of decision tree classifiers. 

The general schematic of a single decision tree (DT) is shown in Figure 2. With only simple 

comparators as their core building blocks, such classifiers are a preferable solution to reduce 

hardware design complexity. Employing a gradient-boosted ensemble of decision trees, we achieve 

a reasonable trade-off between detection accuracy and implementation cost.  

Gradient-boosting (Friedman 2001) is one of the most successful machine learning techniques that 

exploits Gradient-based optimization and boosting, by adaptively combining many simple models 

to get an improved predictive performance. Binary split decision trees are commonly used as the 

“weak” learners. Boosted trees are at the core of the state-of-the-art solutions in a variety of learning 

domains, given their excellent accuracy, fast computation and operation.  

Combined with an efficient feature extraction model, we show that these classifiers quickly become 

competitive with more complex learning models, with only a small number of low-depth “shallow” 

trees (Shoaran et al. 2016). These ensembles of axis-parallel DT classifiers are excellent candidates 

for on-chip integration, by eliminating the multiplication operation and offering significant power 

and area savings.  

 



Performance Evaluation and Hardware Design 

As a benchmark, we consider a boosted ensemble of 8 trees with depth of 3 and compare it to linear 

SVM, cubic SVM and KNN-3 models proposed for on-chip classification, using the following set 

of features: line-length, time-domain variance, and multiple band powers. The proposed approach is 

tested on a large dataset of over 140 days of intracranial EEG data from 23 epileptic patients. Figure 

3 (left) shows the average F1-measure of classifiers. This benchmark is already competitive with its 

peers, and it can outperform with larger ensemble sizes. It achieves an average seizure detection 

sensitivity of 98.3%.  
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FIGURE 3 Comparison of predictive ability of different classification methods with an ensemble of 8 trees of depth 3 

(left), and the classification performance of the asynchronous hardware model compared to conventional DT (right). 

Decision trees are very efficient, but also susceptible to overfitting in problems with high feature 

space dimensionality. To address this, we limit the number of nodes in each tree, i.e., design 

shallow trees using small number of features. Shorter trees are also more efficient in hardware and 

equally important, incur less detection delay. In our simulations, the detection accuracy is not 

significantly improved (<0.5%) with depth values of 4 and higher.  

We propose the architecture shown in Figure 4 to implement ensembles of decision trees. At each 

comparison step, only the features appearing in the active nodes of trees are needed, thus the rest of 

recording array can be switched off to save power. Since the final decision is made upon completing 



decisions in prior levels, one single feature extraction unit can be sequentially used per tree. This 

results in a significant hardware saving, in contrast to SVM that requires all features from the entire 

array. For example, the memory required to classify 32-channel neural data with 8 trees, a 

maximum depth of 3 and threshold resolution of 8 bits, is as low as 100 bytes, while SVM and 

KNN-based arrays would need over 500kB of memory to classify this data. Upon training for a 

specific patient and depending on the difficulty of detection task, additional “supportive” trees can 

be used to further boost the classification accuracy.  

 

 

FIGURE 4 Hardware-level architecture for an ensemble of decision tree classifier with primary and supportive trees 

(left) and a greedy training algorithm to meet the delay constraints (right). 

The proposed architecture faces a practical challenge of designing decision trees under application-

specific delay constraints, that is, given any ensemble 𝜏𝜏 =  {𝜏𝜏1,⋯ , 𝜏𝜏𝑘𝑘} of decision trees obtained 

from our original method, we need to ensure that each tree 𝜏𝜏𝑖𝑖 satisfies the delay 

constraint: ∑ 𝑑𝑑𝑖𝑖 ≤ ∆𝑇𝑇𝑖𝑖∈𝜋𝜋(ℎ) , where 𝑑𝑑𝑖𝑖 is the time required to compute feature 𝑓𝑓𝑖𝑖, ∆𝑇𝑇 is the maximum 

tolerable detection delay, and 𝜋𝜋(ℎ) is the set of all predecessors of node ℎ. We propose a ``greedy'' 

algorithm to solve this practical constraint, by building trees that satisfy the delay requirement 

(Figure 4). However, this algorithm may result in a sub-optimal solution. We further investigate a 

novel asynchronous model to learn from neural data streams, the results of which are shown in 



Figure 3 (right). Here, the trees are built with features that maximize the accuracy, regardless of 

their computational delay. Based on averaged results of completed trees and previous results of 

incomplete trees, decisions are frequently updated over 0.5-sec intervals to avoid long latencies and 

maximize the sensitivity. Once completed, longer trees contribute to a decision at future time steps.   

CONCLUSIONS 

Based on a simple, yet sufficiently accurate decision tree model, we introduce efficient hardware 

architectures and related training algorithms to predict the abnormal neurological states in various 

disorders, such as epilepsy, Parkinson’s disease and migraine. Such classifiers would potentially 

allow the full integration of processing circuitry with the sensor array in various resource-

constrained biomedical applications.  
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