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Energy is the single most important factor that impacts the prosperity of any society, 
underpinning advances on which we all depend. To supply all 7+ billion people on this planet 
the level of energy that the developed world is accustomed to, we would need to generate 60 
terawatts, equivalent to 900 million barrels of oil per day. Where could this astonishing amount 
of energy come from? The commonly used term “The Terawatt Challenge” describes the sheer 
magnitude of the endeavor to produce energy at this level in an economically, socially and 
technologically sustainable way. When one searches for potential sources of energy at the 
terawatt scale it is striking to find that the biggest resources and most technically exploitable 
options are the ones that barely make up 10% of the energy mix today – solar, wind and 
geothermal. 
 
The world energy breakdown will look quite different by 2050 if we indeed manage to solve the 
Terawatt Challenge and it is not unreasonable to think that renewables can handle a heavy 
load. Reports have proposed that 100% of the world’s energy needs by 2030 (11.5 TW) can be 
fully achieved with an energy mix roughly composed of: 50% wind, 40% solar (CSP and PV), 4% 
hydroelectric, 4% geothermal, and 1% tidal turbines 1. 
 
No renewable energy source is as abundant as the Sun and during the past six years we have 
seen its potential being capitalized to the point where solar has moved from niche generation 
to reaching grid parity and becoming a mainstream electricity generation source. Thanks to 15 
GWDC installed, solar was the number one source of new US capacity additions in 2016 with an 
unprecedented 39%. That momentum carried into 2017 with solar being 30% of all new electric 
capacity installed in Q1. Global PV shipments have reached an astonishing 75 GW in 2016, 
arguably making the solar industry the largest optoelectronic sector in the world, worth 
$110B/yr 2. 
The aspirational goal set by the DoE Sunshot initiative to meet $1/Watt by 2020 initially seemed 
unrealistic and somewhat comical to many in the industry in early 2011 3. However, six years 
later and three years ahead of schedule, module prices have hit 0.99 $/W for fix-tilt utility size 
installations 2. 
For 20 states the levelized cost of solar energy have fallen below gross electricity bill savings in 
the first year of a solar PV system’s life. This means grid parity under business-as-usual 
conditions is a reality, with 42 more states expected to follow suit by 2020 4. PV reaching ‘grid 
parity’ establishes an incredible milestone, but this is just the beginning. Like Kurtz and co-
authors suggested, in order to see high market penetration, PV systems costs must drop to 
cover the additional costs of storage or transmission so that solar generation  can be 
dispatched to cost effectively meet electricity demand more broadly in both time and space 5. 
 
The rapid pace of changes brings its own sets of challenges and opportunities. For example, 
there are increasing concerns about the maximum penetration that PV can accomplish due to 
its impact on utility demand, lowering its value as PV penetration increases, and requiring 



 
Figure 1. PV module, Natural Gas and Oil Price Trends (blue) compared to Computing Cost Trend 
(green), 1997-2016 – source from eia.gov 
*Levelized Cost of Electricity estimated for 100 MWDC, fixed-tilt systems with 0.5%/yr and financial 
parameters from 8. 
 

 

further cost reductions. In addition, the important metrics of photovoltaics for sustainable 
energy are expanding to include factors previously not analyzed, such as the impact of capital 
expenditures on realizing high continued growth rates 6,7. 
The technological barriers facing PV have in some ways increased; cost reductions from the 

economies of scale are plateauing, the cost of photovoltaics is a moving target and efficiency  
from single junction technologies is approaching its technological limits, hampering the ability 
to use efficiency increases as the lever to overcome the previous barriers.  
In this context, just like Moore’s Law, there is an underlying law based on fundamental physics 
that can help make a specific, quantitative prediction, about innovation as a function of time. 
For semiconductors, the technical parameter has historically been transistor density; for 
photovoltaics the analog is energy produced per unit volume.  
Figure 1 puts a lot of this discussion in perspective. First, it shows how computing and 
photovoltaics have seen significant and relentless cost reductions the last 20 years by “packing 
more in a smaller volume”, while oil and natural gas has remained relatively constant despite 
shorter term price fluctuations. It also depicts how competitive today’s solar energy prices are 
compared to other forms of electricity.  
 
This achieved reality of silicon module prices below US$1/W

 
and projections of US$0.5/W has 

fundamentally changed solar R&D.  
Slim margins have pushed companies into bankruptcy and has yet to make several 
manufacturers profitable on an annual basis. Cost, intermittency and dispatchability have been 
major challenges in the pursuit of utility scale solar generation. More recently, degradation and 
long-term performance R&D has become crucial for the bankability of projects. However, the 
standard business model of the solar industry with each company eager to outcompete the 



next in price has made the industry very risk adverse when it comes to implementation of 
innovation. 
 
So, where do we go from here? As we move towards an “electric-powered world” and 
everything around us starts demanding electricity in a clean and efficient way (e.g. electric 
vehicles, portable electronics, rural electrification), new challenges arise.  The first new 
challenge centers around portability: the use lightweight and flexible modules necessary for 
implementation into our everyday life. The second is achieving high power in small areas and 
the use of sustainable materials for device manufacturing. Similar to many consumer 
applications, solar margins will improve and engineering hurdles centered around aesthetics, 
customization and functionality will be part of our everyday R&D life. An analogy is the 
introduction of Ford’s Model T car. Photovoltaics is at a stage where it has demonstrated its 
affordability, impact and potential - from now on we will see a whole new technology taking 
off.  
 
Following the Moore’s Law argument, the path for improved PV is to make cells thinner and 
more efficient. As the industry matures, costs are increasingly dominated by materials’ cost and 
expensive process changes translate into very small incremental benefits, we come to 
appreciate the fundamental nature of the scientific breakthroughs necessary to propel this 
energy source to next generation levels. Higher power cells can be achieved by stacking cells 
with different bandgaps thus efficiently capturing a wider portion of the solar spectrum.  The 
efficiency limits rise from 33% for a single junction cell to 43% for two junctions under no 
concentration, 49% for three junctions, and 66% for infinitely many junctions. This approach is 
not novel, multijunction cells are well known in space applications, where very high quality 
single crystals are epitaxially grown and cells are engineer to withstand radiation and high levels 
of illumination 9. The analogy to the car industry, is having a limited-edition Ferrari in your 
garage. Although these modules are very expensive, epitaxial lift-off techniques enabling 
substrate reuse have been demonstrated showing a path to lower costs. The future of solar lies 
in merging the ubiquitousness of the “model T” solar cells with the performance of the 
“limited-edition Ferrari” cells. 
 
The first thing we need to realize is that we have to rely on the mass-production low-cost 
manufacturing lines of the “model T”, which most likely means a silicon cell will be our bottom 
cell and we cannot count on high quality single crystal films for our multilayer stack. Instead we 
will have to rely on faster deposition methods like evaporation or sputtering and defect 
engineered top films to achieve the electrical and optical properties desired 10. The latter point 
is crucial to the success of next generation solar absorbers, engineered defect tolerant 
materials is the pathway to enable ultra-low-cost manufacturing technology for high efficiency 
devices. It has been shown that a top-cell bandgap of 1.7 eV and an efficiency comparable to 
standard silicon cells today (20%) can enable 32% efficient tandems 11.  
The task seems daunting, especially when one considers that the performance of a full device is 
usually governed by the concentration and distribution of nanoscale inhomogeneities and 
defects throughout the entire solar cell.  
 



 
Figure 2. Schematics of a machine learning driven approach to material’s design for discovery and 
engineering of next generation solar cell materials. Data from multiple imaging modalities at 
different scales can be analyzed to develop guidelines for growth and/or processing of a material.  
*Diffraction pattern and sunburst diagram from {Schelhas:2016hc} {Kusne:2015ct} respectively. 

How do we accelerate discovery and defect engineering to facilitate a high-power, portable and 
economic solar industry? We have to redefine the paradigms for materials discovery, especially 
for systems with complex functionalities, and move beyond serendipitous discoveries, 
Edisonian approaches and the classical synthesis-characterization-theory methodologies. The 
answer lies in highly correlative imaging methods under operating conditions combined with 
big data analytics. 

Understanding the fundamental relationships between composition-structure-properties on a 
nano-pixel basis, under real operating conditions and in situ (controlled temperature and 
ambient) is fundamental to unraveling the causality and effect of certain defects and their 
direct impact on performance. Imagining techniques these days do not provide just a mere 
illustration of the system under study, they actually contain compositional, structural and 
functional information. As one could imagine the correlation of multiple 2D or 3D mapping 

modalities on a pixel-to-pixel basis and the multiple dimensions of these maps given by time, 
temperature and ambient conditions creates a ‘big data’ challenge in itself. 

In situ and operando measurement techniques combined with nanoscale resolution have 
proven invaluable in multiple fields of study. I would like to argue that correlative hard X-ray 
microscopy (HXM) with <100 nm resolution is a unique capability that can radically change the 
approach for optimizing solar absorbers, interfaces and full devices in solar cell research. Unlike 
other fields of microscopy, HXM have excellent penetration through layers and entire devices, 
enabling 3D imaging of buried structures. They can easily go through gases and fluids, enabling 
studies at pressure, and under process conditions. They allow quantitative studies of sample 
composition with trace-element sensitivity in structured materials and devices. Chemical-state 
information of individual atomic species can be obtained using X-ray spectroscopic techniques. 
X-rays do not interact with external fields, and thereby enable studies in electric or magnetic 



fields 12. As acquisition speeds and resolution increase giving us more density of data points and 
the functionality of the measurements add more dimensions to be analyzed, the handling, 
management and analysis of data sets become more and more complicated. Operando 
measurements as well as in-situ studies pose a new challenge. Finding correlations in the 3+ 
dimensional data sets that result from many of these measurements is not straight forward, 
and the possibility of missing connections, relationships and trends is increasingly concerning. 
Machine learning techniques including principal component and cluster analyses have been 
widely used in fields notoriously plagued with tremendous amounts of data 13. A key benefit of 
these approaches is the ability to identify trends in highly dimensional data that would be 
inherently difficult to accomplish by hand. 
 
The first step towards full information recovery from high resolution multifunctional imaging 
data is the adoption of big-data analytics 14-17. This means implementation of dimensionality 
reduction, clustering techniques and statistical unsupervised learning 13. Unsupervised image 
analysis tools targeted to high-performance computing platforms have shown the ability to 
analyze high resolution scanning and electron microscopy data in 2D in real time 18. The 
advances in high resolution experimental imaging and high-performance computing 19 will 
undoubtedly propel materials discovery and ultimately “materials by design” 20. 
However, ‘correlation does not imply causation’ meaning that just because we observe the 
statistical correlation between two observations it does not imply that we understand the 
underlying physics contained in the multimodal imaging. Transitioning from ‘big data’ to ‘deep 
data’ is the next step. All the structure-property relationships at the nanoscale retrieved from 
‘big data’ can now be visited with real physical models allowing for verification and 
improvements in predictive modeling 14. This step allows to close the loop and propose design 
guidelines to grow or process the material with the desired properties and functionalities. 

Materials informatics is ready to lay out the ground for a new paradigm in materials discovery, 
especially for complex functional systems like solar cells. And it could very well end up being 
data what ultimately pushes down the cost of solar to fossil fuel levels.  
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