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Fish Locomotion é:'z\

e Swordfish: 28 m/s

Common Ships: <20 m/s

Thunniform fish: 290%

Screw propeller: 40%~60%

Fish: 0.1~0.3 Body length

Ship: 3.0~5.0 Body length

Northern pike: ~25 ¢

Common ship: gradually




Existing robotic fish
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Physiologic structure & Swimming style
Natural fish
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Robotic fish (theoretical model)

Oscillating hinge joints
Flexible rear body
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Biomimetic robotic fish control K'K

1. Highly efficient locomotion
o Basic body wave
a Travelling body wave
o Kinematic analysis in swimming gaits

o Dynamic analysis in fishlike swimming




Highly efficient locomotion A
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B Ensure the center of mass of the robotic fish to

(Basic body wave—Symmetry)

(Travelling body wave)

=

be fixed on the axis along the swimming direction. _ Basic body

B Ensure the resultant of the lateral forces is nearly
zero when swimming.

wave equations
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Basic body wave equations Travelling body wave equations
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Highly efficient locomotion A
OO Small-amplitude slender-body theory

Basic body wave I, =SIN(kX+ wt)

Linear density 0= 0, /(C1X+C2X2) Here S~ X

PS)Y (s,1) = py(8)Y(S:1)

Yooty (X, 1) = [Cx + C,x*][sin(kx + et)]




Highly efficient locomotion A

O Kinematic analysis

- Travelling body wave equations - Discrete equations
Yooty (X, 1) =[Cx + C,x*][sin(kx + at)] :> {(Xi,j—xi,u) +(Yij = Yija)” =1

Yi.; = (X +C,%; ) sin(kx; —2=i)
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Highly efficient locomotion A

0 Dynamic analysis

« Coordinate systems

- Lagrangian equations
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Highly efficient locomotion A

0 Dynamic analysis

* Forces and moments on the

robotic fish
doL oL i
Fo=—"— "= =NFE*+(F~+F. )cosd
“odtoxX  oX le (F+Fy Joose,
doL oL i .
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Propulsive speed with varying
amplitudes and frequencies
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Highly efficient locomotion (A

Typical robotic fish (iSplash-1I) Real fish (Carp)
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2. Highly maneuverable locomotion

o Turning characteristics of real fish
o Dynamic trajectory tracking strategy

a Control for frontfilp and backflip
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Highly maneuverable locomotion A

O Turning characteristics of real fish

Biological phenomenon:
 Fish always maintain their posterior bodies pass through the
same point (a virtual ‘C’ pipe) in space when turning.

, N )
=\ A

’3‘__71\ 15




Highly maneuverable locomotion A

0 Dynamic trajectory tracking (DTT)

F =mV?/r =mo’r’
M, =mar'

mV 2

aV?sing, — F, sin6’—2O
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 In addition to provide enough centripetal force, the posterior
/ body should move in a virtual ‘C’ pipe based on the feedback
N Information.
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Experimental results A

: 180° C-start

.. Reported in
ltems Our robotic fish e e e
Turning angle 220° 120°
Average turning

rate 460°/s (peak 670°/s) 150°/s
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Experimental results A

»Multimodal locomotion test (bionic)

Forward swimming in BCF Rhythmic turning

Diving and surfacing
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Experimental results

»Multimodal locomotion test (non-bionic)
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Backward swimming in BCF

Backward swimming in MPF
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Experimental results A

»High-maneuverability swimming test

Fast turning (90°) Large-range turning (360°) A flip in pitching style

Large-range rolling (360°)
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Highly maneuverable locomotion A
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O High maneuvers control
In the vertical plane for
a robotic dolphin
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Frontflip and backflip of a robotic dolphin
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Highly maneuverable locomotion A

» The developed dolphin robot realized several leaping motions,
and attained a marked speed as high as 2.93 BL/s (2.11 m/s).
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Summary A

A novel basic body wave theory is proposed to design the
practical travelling body wave for a robotic fish.

Highly efficient locomotion are realized through swimming
gaits optimization, kinematic and dynamic analysis.

A dynamic trajectory tracking strategy based on a virtual ‘C’
pipe is proposed according to the observation and analysis
In turning of real fish.

4. A variety of high maneuvers are successfully implemented,
such as fast C-start, frontflip, backflip and leaping out of
the water, etc.
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Future work
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