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Predictive models are being developed in virtually every medical specialty for the purposes of 

diagnosis or prognosis. They provide an individualized estimate of health care related events, 

such as prognosis in cardiovascular disease, given specific information about an individual (e.g., 

genotype, family history, past medical history, clinical findings). These models, developed using 

statistical and machine learning techniques applied to large clinical data sets, are being used by 

health care professionals as well as patients. Verification that the estimated or predicted event 

probabilities truly reflect the underlying probability for a particular individual (i.e., evaluating 

model calibration) is a critical but often overlooked step in model evaluation.  

 

Measuring Calibration 

 

A primitive notion of calibration is often designated as calibration-in-the-large or bias, which is 

the difference between the average estimate (prediction) and the proportion of observed events. 

This is the best estimate if one considers a single cluster of patients. Assigning the prior 

probability of the event as the risk score for every patient would result in a perfectly calibrated-

in-the-large model, but it would add no individualized information, hence this index is of limited 

practical utility for assessment of predictive models, although it can be useful for recalibration. 

 

A fundamental problem in evaluating calibration in medical problems is the lack of a gold-

standard to compare the individual risk estimate to. A gold-standard would consist of sufficient 

numbers of exact replicas of the individual accurately diagnosed or followed without censoring 

so that the proportion of observed events would be equal to the “true estimate” for the individual. 

For large enough groups of individuals with similar profiles, there could be meaningful 

approximations of the true probability. However, the way in which we define the similarity of 

patient profiles is important. Currently, calibration is measured by comparing outcomes in sets 
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of patients with similar estimated risks, but this output-space cluster is dependent on the 

predictive model and is counter-intuitive.  

 

 

Output-space similarity 

One of the most popular indices to assess calibration of predictive models was developed in the 

context of logistic regression by Lemeshow and Hosmer (1982). The idea behind the test is 

simple: if the cases are sorted according to the estimated level of risk and the mean estimate for 

each decile of risk is very close to the proportion of positive cases within the decile, then one 

cannot reject the hypothesis that the model is correct. (Hosmer, Taber et al. 1991; Hosmer, 

Hosmer et al. 1997; Hosmer and Hjort 2002). The sum of [the squared differences between the 

sum of estimates and number of events in each decile divided by the sum of estimates in that 

decile] for each outcome is reported to follow a χ2 distribution with 8 degrees of freedom. If p < 

0.05, we reject the hypothesis that the model fits the data. The H-L C statistic based on deciles 

of risk is defined as: 
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where πDl and oDl are the sum of estimates in a decile and observed frequencies in the same 

decile, for cells indexed by group (decile) l and outcome D. Hosmer and Lemeshow showed via 

simulations that C is approximately distributed as χ2 with l-2 = 8 degrees of freedom when the 

fitted model is the correct one and the estimated expected cell frequencies are sufficiently large. 

Note that the H-L statistic is model-dependent, since the statistic compares the average 

estimate in each decile of estimated risk with the proportion of events in that decile. To visualize 
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the calibration of a predictive model, it is common to plot the average estimate for groups 

representing either (a) percentiles of estimated risk against the proportion of events in that 

group, as described above, or (b) pre-defined ranges of the estimates. The latter is common in 

clinical predictive models. 

 

Input-space similarity 

We describe a simulation in which we established in advance 4 tight clusters of “patients” 

according to 2 variables, x1 and x2. The purpose of this simulation was to illustrate the HL 

goodness-of-fit statistic and check whether differences in calibration can be determined using 

this statistic. Bi-normal distributions were generated with identical standard deviations (0.1) and 

centered at (0,0), (0,1), (1,0), and (1,1), for clusters 1 to 4, respectively, each with 100 patients. 

The binary outcome for each patient in a cluster was generated from a Bernoulli distribution with 

probabilities 0.01, 0.4, 0.6, and 0.99 for clusters 1 to 4, respectively. Figure 1 shows the spatial 

distribution of the clusters. For verification, the four clusters were automatically re-discovered 

using the Expectation-Maximization algorithm.  

The resulting logistic regression model is highly significant. For comparison, we built a neural 

network with hidden units so that it was capable of finding a non-linear function relating the 

predictors and outcomes, with results illustrated in Figure 1b. An ideal model would assign the 

true underlying probability for each case (i.e., 0.01, 0.4, 0.6, and 0.99 depending on which 

cluster the case belonged to). A neural network with enough parameters was able to get closer 

to that goal than a semi-linear model such as logistic regression. In this simulation, we 

intentionally allowed some degree of overfitting of the neural network model to check whether 

differences could be noted in the H-L statistics.  
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Figure 1. Simulation with four pre-defined non-overlapping bi-normal clusters of individuals with known 

underlying probability of an event (0.01, 0.40, 0.60, and 0.99 for clusters 1 to 4, respectively). Top Panel: 

Two dimensional data are projected into one dimension by the logistic regression model. Dotted diagonal 

lines divide quartiles of risk as determined by the logistic regression model. A patient from cluster #2 

indicated by the arrow has an estimate closest to the average estimate in cluster #3 than to that of cluster 

#2. Confidence in its estimate should be lower than that for a patient in the middle of one of the clusters. 

The input-space clusters, as opposed to the quartiles of risk, are easy to explain: Cluster #1 has patients 

with “low x1 and low x2”, Cluster #2 has patients with “low x1 and high x2”, and so on.  

Bottom Panel: Projection of the points into an “axis” for neural network estimates. The neural network 

model fits better the true probabilities for clusters 2 and 3 than does the logistic regression model.  
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In Table 1, we display descriptive statistics for the estimates obtained by the two types of 

models.  

                        

  Cluster  

Proportion  

of Events LR Mean NN Mean 

LR  

Std Dev 

NN  

Std Dev 

LR 

Minimum 

NN 

Minimum 

LR 

Maximum 

NN 

Maximum   

  1 0.01 0.0338 0.0219 0.0172 0.0069 0.0066 0.015 0.0949 0.059   

  2 0.42 0.4129 0.4819 0.1080 0.0207 0.1955 0.431 0.8013 0.584   

  3 0.64 0.6291 0.6852 0.1149 0.0146 0.2873 0.647 0.8507 0.732   

  4 0.98 0.9740 0.9908 0.0127 0.0011 0.9301 0.985 0.9954 0.992   

                        

 

Table 1. Descriptive statistics of Logistic Regression (LR) and Neural Network (NN) estimates according 

to input-space clusters. Note that the neural network model’s estimates do not overlap between clusters 

(i.e., the minimum estimate for cluster #3 is greater than the maximum estimate for cluster #2).  

 

The H-L C statistic for the logistic regression model was 6.43 (p=0.59), hence we would not 

reject the hypothesis that the model is calibrated. Although the neural network model had a less 

favorable H-L C of 11.773 (p = 0.16), its overall errors were smaller.  

In this example, the neural network was better able to approximate the true underlying 

probability of the event in clusters #2 and #3, as could be seen by the ranges of estimates in 

these clusters, as well as their maximum residuals. However, comparison of HL-C and 

inspection of the calibration plot in Figure 2 would not indicate that neural networks would be a 

better model in this case.   
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Figure 2. Calibration plot for logistic regression and neural network models based on deciles of risk. 

There is no apparent superiority of one model versus another. 

 

Implications for Medical Decisions 

 

In clinical practice, there are important implications for incorrect estimates. For example, the 

widely employed clinical practice guideline from the Adult Treatment Panel III (NCEP, 2002) 

utilizes cardiovascular risk estimates similar to the ones available in online calculators to 

recommend particular treatment regimens. For non-calibrated estimates, this may result in 

inappropriate use of medication to manage cholesterol levels. Computer-based post-marketing 

tools for surveillance of new medications and medical devices utilize models that adjust risk for 

the population being treated (Matheny et al, 2006). These models depend on the accuracy of 

these estimates to trigger appropriate alerts for unsafe technologies and drugs. For non-

calibrated estimates, this risk adjustment may result either in a large number of false positives 

or false negatives. Both situations incur large costs to the healthcare system. It is therefore 

critical to assess the calibration of estimates before employing these models in clinical settings. 
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We and others have shown in different domains that the calibration of medical diagnostic and 

prognostic models can vary significantly according to the population in which they are applied 

(Hukkelhoven et al, 2006; Matheny et al, 2005; Ohno-Machado et al, 2006), as opposed to the 

model’s discrimination, often measured by areas under the Receiver Operating Characteristic 

curve. While there are some efforts to recalibrate models for different populations and study 

reclassification rates, web-based calculators that estimate individualized risk do not yet take this 

issue into account, and may present incorrect estimates to a given individual. We have 

proposed some methods to take into account input-space clusters in predictive models (Osl et al 

2008; Robles et al 2008), but much remains to be done in order to inform healthcare workers 

and the public about the potential shortcomings of this facet of personalized medicine. As new 

molecular-based biomarkers for a variety of health conditions are currently being developed at 

an accelerated pace and used in multidimensional models to diagnose or prognosticate these 

conditions, it becomes even more important to develop accurate methods to assess the quality 

of estimates derived from predictive models. 
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