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The fact that light carries momentum and can exert a mechanical force was first proposed 

by Kepler and Newton.  The interaction of light with mechanical vibrations, in the form of 

Brillouin and Raman scattering, has been known since the 1920’s and has many practical 

applications in the fields of spectroscopy and optoelectronics.  With the advent of the laser 

in 1960’s, it became possible to manipulate micron-scale dielectric particles using optical 

“tweezers” as pioneered by Art Ashkin[1].  This was also the beginning of the use of laser 

beams for the trapping and manipulation of gas-phase atoms, which ultimately led to the 

demonstration of atomic Bose-Einstein Condensates.  More recently, it has been realized 

that laser light, with its very low intrinsic noise, may be used as an effective method of 

cooling a macroscopic mechanical resonant element, with hopes of reaching effective 

temperatures suitable for measuring inherently quantum mechanical behavior[2].  In duality 

to the cooling effect, it has also been demonstrated that optical amplification from a 

continuous-wave laser beam can be used to form regenerative mechanical oscillators[3].  

With these developments, interest in the new field of cavity-optomechanics has been piqued, 

with myriad of different materials, devices, and techniques currently being developed.        

There is now a wide-spread realization that optical gradient forces, as opposed to the 

scattering radiation pressure force, may be utilized within guided wave nanostructures to 

create very large optomechanical coupling to micro- or nano-mechanical motion[4].  In 

contrast to the scattering radiation pressure force, which one can intuit from the reflection of 

momentum-carrying photons, the gradient force as its names suggests results from gradients 
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in the intensity of light, which in the near-field can be substantial.  A nanophotonic platform 

for utilizing the strong gradient optical force has recently been developed[5,6] in which light 

and sound are manipulated through a common nano-structuring.  We call these devices 

“optomechanical crystals” (OMCs) due to the simultaneous realization of phononic and 

photonic bandgap states (similar to the electronic bandgaps that form in regular crystalline 

materials).  These new structures enable the engineering of various integrated functionalities 

not possible in other systems.  Ultimately, one may come to view these systems as fully 

integrated planar light and sound wave circuits.  In what follows we introduce the OMC 

concept, and discuss a “photon-phonon translator” which may find use in a variety of 

applications from RF-over-optical communication to the study of mesoscopic quantum 

systems. 

 

Introduction to Optomechanical Crystals (OMCs) – 

Applied to the propagation 

of light, periodicity gives 

rise to photonic crystals, 

which can be used to 

engineer broad- and 

narrow-band dispersion, to 

confine optical modes to 

small volumes with high 

optical quality factors, and 

to build planar lightwave 

circuits[7].  Periodicity 

applied to mechanical 

vibrations yields Phononic 

crystals[8], which harness 

mechanical vibrations the 

same way that photonic 

Fig. 1: (a) General geometry of the periodic nanobeam structure’s 

projection (infinite structure, no defect). (b) Optical band diagram of 

the nanobeam’s projection. The band from which all localized optical 

modes will be derived is shown in dark black, with Ey of the optical 

mode at the X point shown to the right of the diagram. The harmonic 

spatial potential created by the defect, along with the first three optical 

modes are shown as emanating from the X-point band-edge. (c) 

Mechanical band diagram of the nanobeam’s projection. The three 

bands that form defect modes that will be discussed in this work are 

colored. The bottom-most mode is from the X point of the red band; the 

 points of the green and blue bands correspond to the middle and top 

mechanical modes, respectively. The frequencies of the defect modes 

that form from the band edges are shown as short, horizontal bars. 
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crystals harness optical waves, allowing tantalizing possibilities such as phononic band gaps, 

nonlinear phononics, coherent sources of phonons, and planar sound wave circuits.  It has 

been proposed that periodic structures can be used to simultaneously confine mechanical and 

optical modes [9].  Here we endeavor to take this one step further, and to use 

cavity-optomechanics concepts to marry mechanics and optics in ways that make both more 

powerful.   

The dispersive interaction induced by mechanical motion[6] is responsible for coupling 

the photonic and phononic crystal properties of the material to yield optomechanical crystals. 

For the complex motion allowed in these periodic structures, the origin of the optomechanical 

coupling can be subtle, and in many cases even counter-intuitive. Nonetheless, understanding 

the nature of the coupling is crucial, since 

the degree of coupling between different 

optical-mechanical mode pairs can vary 

by many orders of magnitude within the 

same structure. Moreover, subtle changes 

in the geometry can induce enormous 

changes in the optomechanical coupling, 

which can be used to engineer the 

coupling if the system is well-understood. 

A perturbation theory of Maxwell’s 

equations with shifting material 

boundaries[10] provides a simple and 

computationally-robust method of 

calculating the optomechanical coupling 

of these complex motions. Here we 

describe how this perturbation theory can 

be used to create an intuitive, graphical 

picture of the optomechanical coupling of 

simultaneously localized optical and 

Fig. 2. (a) Schematic illustration of actual nanobeam 

optomechanical crystal with defect and clamps at 

substrate. (b) Localized optical modes of the nanobeam 

OMC. The colors of the names correspond to the 

illustration of the inverted potential in Fig. 2(b). 

Localized, optomechanically-coupled mechanical 

modes of the nanobeam OMC. The colors of the names 

correspond to the colored bands and horizontal bars 

showing the modal frequencies in Fig. 2(c). 
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mechanical modes in periodic systems. We use this graphical representation to illustrate 

methodologies for optimizing the coupling of the mechanical and optical modes. 

Figure 1 shows the bandstructure for photons and phonons (mechanical vibrations) of a 

quasi-1D patterned Silicon nanobeam.  Just as localized optical resonances can be formed in 

“flat-band” regions (regions of low optical dispersion in which the energy velocity of light 

approaches zero) close to the zone-boundaries, so to can phonon states be localized.  As the 

wavelength of the optical mode and the mechanical vibration must be the same (they live on 

the same 1D lattice!), the ratio of the frequency of optical to phonon modes is simply given 

by the ratio of the speed of light to that of the speed of sound (or more generally whatever 

type of vibration is involved).  It so happens that for the Silicon nanobeam example of Fig. 1 

operating at an optical wavelength of 1.5 microns, this yields a mechanical mode frequency 

in the 1-5 GHz range (shrinking the 

width of the nanobeam offers the 

intriguing possibility of reaching 

frequencies in the X-band (10-12 GHz) 

or even higher). The colored bands in 

Fig. 1(c) correspond to those bands 

which have large optomechanical 

coupling.  By forming a “defect” in 

the periodic lattice through a slow 

reduction in the hole-to-hole pitch 

within the center of a patterned beam, 

one may form localized photon and 

phonon states.  This is shown in Fig. 

2.  We label the three primary 

phononic localized resonances as 

pinch, accordion, and breathing modes 

(see caption).   

The optomechanical coupling between mechanical and optical degrees of freedom is 

given to lowest order by the dispersive term, gOM = / = c/LOM, where c is the 

Fig. 3: For the accordion mode with the fundamental 

optical mode, (a), the effective length as a function of 

total beam width, (b), a breakdown of individual unit cell 

contributions to the total optomechanical coupling for a 

structure with a beam width of 700 nm (circled in (a)), 

mode frequency of 3.97 GHz and effective motional mass 

of 0.334 pg, with accompanying mechanical mode plot. 

The narrower mechanical mode envelope results in 

drastically different optomechanical coupling 

contributions compared to the wider beam.  
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Fig. 4: Traveling photon-phonon converter, optical cavities and 

waveguides are colored orange while the phononic cavity and waveguide 

are blue. 

unperturbed optical cavity frequency, LOM is an effective length over which a photon’s 

momentum is transferred to the mechanical structure (equal to the cavity length in the case of 

a Fabry-Perot cavity), and  parameterizes the maximum displacement of the mechanical 

motion for the mode of interest.  The perturbation theory of Maxwell’s equations with 

shifting material boundaries[10] allows one to calculate the derivative of the resonant 

frequency of a structure’s optical modes, with respect to the -parameterization of a surface 

deformation perpendicular to the surface of the structure.   As an example of the power of 

the perturbative method to engineer the optomechanical coupling strength, we show in Fig. 3 

the optomechanical coupling strength of the fundamental accordian mechanical mode at ~1.5 

GHz as a function of beam width.  One can see that the optomechanical coupling length 

approaches a minimum value close to the wavelength of light for a beam width of 700 nm, 

whereas it increase to well over 300 times this value for a beam only twice as wide         

 

The OMC “traveling photon-phonon translator” – 

The OMC concept 

naturally lends itself to a 

microchip integration 

platform for the routing, 

interaction, and exchange 

of light and mechanics, 

with possible application 

in photonics and 

RF-over-optical communication.  At the heart of such applications is a device we have 

termed the “traveling photon-phonon translator”.  This device is shown schematically in Fig. 

4, and consists of two optical cavities coupled together by a single phonon cavity.  An 

input/output optical waveguide is strongly coupled to one of the optical cavities (top cavity, 

labeled a), as is a phononic waveguide to the phononic cavity (labeled b).  The second 

(bottom, labeled p) optical cavity is pumped to some large coherent state amplitude via a 

second optical waveguide (of lesser importance and not shown).  In order for the “traveling 



 

 6

photon-phonon translator” to effectively 

work (and convert photons to phonons or 

vice-versa), several criteria relating to the 

input and output coupling rates of photons 

and phonons, and the internal dissipation 

rates, must be met. 

Due to the great deal of flexibility in the 

OMC architecture, fulfilling these criteria is 

rather trivial due to the chip-scale platform 

in which the devices are formed.  A 

simulation of the scattering matrix for input 

and output coupled power (amplitude) for 

both phonons and photons is shown in Fig. 5 

for a structure with parameters determined 

from a numerical modeling of a quasi-2D 

OMC cavity structure.  The efficiency of 

phonon-to-photon, or photon-to-phonon 

transfer (the system is symmetric, and thus 

equal for the two conversion efficiencies) is 

shown to be as high as 75%, limited by 

internal mechanical and optical loss.  

These initial theoretical results are very 

encouraging, and indicate that the traveling 

photon-phonon translator concept can be 

used to interconvert photons and phonons 

with high efficiency for applications such as optical delay lines (where the slower phonon 

provides the delay), dynamic optical routing/buffering[11], and narrowband RF/microwave 

filters[12].    

Fig. 5: Photon to phonon scattering matrix amplitudes 

as a function of laser detuning, . |s11| is the reflected 

signal from the optical waveguide coupled to cavity a, 

|s22| is the reflected signal for the phonon input, and 

|s12| and |s21| are the photon-phonon interconversion 

amplitudes. 
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Beyond classical RF-microwave photonic applications, the OMC photon-phonon 

translator works equally as well as a quantum translator for individual quanta of phonons or 

photons if the phononic cavity can be coupled to a low enough bath temperature (100mK).  

Such a system would be very interesting as a converter of microwave to optical photons when 

integrated with piezoelectric materials.  In the burgeoning field of circuit QED[13], in which 

rapid progress has been made in realizing on-chip coupled qubits via a microwave “quantum 

bus”, this could enable off-chip coupling via photons for long-distance quantum 

communication and entanglement between nodes.  
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