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The dramatic growth in humanity’s use of natural resources over the past century is 
reaching alarming levels, threatening our planet and the livelihood of future generations. 
Our Common Future, the seminal report of the World Commission on Environment and 
Development, published in 1987, raised serious environmental concerns about the state of 
our planet. Our Common Future was also forward-looking, introducing for the first time 
the notion of sustainable development: development that meets the needs of the present 
without compromising the ability of future generations to meet their needs. The concerns 
raised by Our Common Future were reiterated by the United Nations Environment 
Program in its fourth Global Environmental Outlook report published in October of 2007 
(UNEP 2007) and by the United Nations Intergovernmental Panel on Climate Change 
(IPCC 2007). For example, the fourth Global Environmental Outlook report stated that 
“there are no major issues raised in Our Common Future for which the foreseeable trends 
are favorable.” 
 
The development of policies for sustainable development translates into decision making 
and policy making problems concerning the management of our natural resources 
involving significant computational challenges that fall into the realm of computing and 
information science and related disciplines (e.g., operations research, applied 
mathematics, and statistics).   The new field of Computational Sustainability brings 
together researchers in these fields to develop new computational models, methods, and 
tools to help manage the balance between environmental, economic, and societal needs 
for a sustainable future.  
 
In this short paper, we provide examples of computational sustainability problems arising 
in different domains, ranging from wildlife preservation and biodiversity, to balancing 
socio-economic needs and the environment, to large-scale deployment and management 
of renewable energy sources. We also outline several broader research themes in 
computational sustainability.  
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COMPUTATIONAL CHALLENGES IN SUSTAINABILITY   
 

 
Sustainability and sustainable development concerns the interactions between 
environmental, economic, and societal needs. In this section we consider examples of 
computational problems in the context of these different dimensions of sustainability. 
 

Biodiversity and Species Conservation 
 

The reduction and fragmentation of natural habitat due to deforestation, agriculture, 
urbanization and land development is a leading cause of increased rates of species decline 
and extinction. A strategy to increase the chances of species viability is to protect habitat 
through the creation of biologically valuable sites or reserves. Examples include the 
National Wildlife Refuge System, managed by the U.S. Fish and Wildlife Service, 
national parks, as well as conservation reserves established by private groups such as the 
Nature Conservancy or The Conservation Fund. Given the limited resources available for 
conservation, it is critical to choose sites carefully. From a mathematical point of view, 
the site selection or reserve design problem (Ando et al. 1998, Moilanen et al. 2009, and 
Polasky et al. 2008) concerns the selection of sites optimizing certain criteria (e.g., habitat 
suitability for certain species), while satisfying one or more constraints (e.g., budget). In 
recent years biologists have also recognized the importance of actively combating habitat 
fragmentation, leading to considerable interest in so-called conservation corridors, which 
are continuous areas of protected land that link zones of biological significance. The 
design of conservation corridors is a special case of the site selection problem: the 
objective is to design connected corridors that are made up of the land parcels that yield 
the highest possible level of environmental benefits (the ``utility'') within the budget 
available (Onal and Briers 2005, Williams et al. 2005). We have recently formulated this 
problem mathematically as a so-called connection sub-graph problem (Conrad et al. 
2007; Gomes et al. 2008). As a particular application, we considered the design of 
wildlife corridors for grizzly bears in the Northern Rockies, enabling movement between 
the three core ecosystems: Yellowstone, Salmon-Selway, and Northern Continental 
Divide Ecosystems, spanning 64 counties in Idaho, Wyoming, and Montana. This 
application corresponds to a large-scale optimization problem posing significant demands 
on current computational methods. In order to scale up solutions, a deeper understanding 
of the underlying problem structure is required. We developed a budget constrained 
utility optimization approach using a hybrid constraint-based mixed integer programming 
approach that exploits problem structure. Our results show that we can dramatically 
reduce the cost of large scale conservation corridors --- by over an order of magnitude --- 
compared to existing, more ad-hoc, corridor design strategies. 
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Further complexity in the site selection and corridor design problems results from 
considering different models for land acquisition over different time periods (e.g., 
purchase, conservation easements, auctions), dynamic and stochastic environments, and 
multiple species. For example, in order to preserve bird habitats and design bird 
corridors, a good understanding of hemispheric-scale bird migrations is required, with 
complex population dynamics, across different climate and weather systems and 
geographic topologies. Modeling such complex species distributions and developing 
appropriate conservation strategies requires the development of new large-scale 
stochastic optimization methods. Moreover, to obtain the right model parameters and 
determine current species distribution, machine learning and statistical techniques are 
required to analyze large amounts of raw species data (Dudik 2007; Dietterich 2009; 
Elith et al. 2006; Kelling et al. 2009; Munson et al. 2009; and Phillips et al. 2004). 
 
 

Natural Resource Management 
 
We now consider an example about the concerning situation of the state of the world’s 
marine fisheries: The biomass of top marine predators is estimated to be one-tenth of 
what it was half a century ago and is declining (Worm et al. 2006). As a result of 
overfishing, pollution and other environmental factors, important marine species have 
gone extinct, with dramatic consequences in terms of the ocean’s ability to filter 
nutrients. Researchers believe that the collapse of the world’s major fisheries is primarily 
the result of the mismanagement of fisheries (Clark 2006; Costello et al. 2008). There is 
therefore a clear urgency to find ways of managing fisheries is a sustainable manner. A 
particular management approach that has been shown effective in terms of 
counterbalancing overharvesting involves limiting the total allowable catches per species, 
combined with permits to harvest specific quantities of fish, known as individual 
transferable quotas (Costello et al. 2008; Heal and Schlenker. 2008; Worm et al. 2009). 
Complex dynamical models, as developed as part of dynamical systems theory, can be 
used to identify the optimal annual amount of fish that can be harvested in a certain 
fishery, taking into consideration re-generation rates of species, carrying capacity of the 
habitat, discount rates, and other parameters.  
 
Dynamical systems theory provides tools for characterizing the dynamics and long term 
behavior of systems as a function of its system parameters, providing insights into the 
nonlinear system dynamics, identifying patterns and laws, in particular, bifurcations 
(Ellner and Guckenheimer 2006; Strogatz 1994). A bifurcation occurs when small changes in 
the parameter values of the system (e.g., the rate of fish harvesting) leads to an abrupt 
qualitative change (e.g., the collapse of a fishery).  
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In addition to non-linear dynamics, our problems also involve making decisions such as 
the amount of fish to harvest, often combining continuous and discrete variables. This 
leads to a class of hybrid dynamical optimization models  (Clark 1976; Conrad 1999). 
These models in principle provide information on optimal harvesting strategies but 
finding such strategies is computationally hard. One can simplify the problem by only 
considering certain classes of harvesting policies. For example, traditional approaches 
have focused on so-called constant escapement policies. Our initial analysis indicates that 
in discrete-time models, periodic policies can outperform constant escapement policies 
(Ang et al. 2009; Ermon et al. 2009). Furthermore, our computational results provide new 
insights into how different model parameters, e.g., the discount rate and cost elasticities, 
dramatically affect the optimal policy strategy. 

 
Balancing Socioeconomic Needs and the Environment 

 
We now consider an example that highlights another dimension of sustainable 
development. One of the members of our Institute for Computational Sustainability at 
Cornell University, Chris Barrett, has extensively studied the socioeconomic 
interrelationship between poverty, food security, and environmental stress in Africa 
(Barrett et al. 2007). Barrett is interested in understanding the links between resource 
dynamics and the poverty trap in small holder agrarian systems. In particular, we 
consider   pastoral systems in East Africa (Luseno et al. 2003). Pastoralists maintain 
herds of animals such as cattle, camels, sheep, and goats. Due to the high variability in 
rainfall they migrate looking for water and forage resources, traveling sometimes as far as 
500 km. We would like to obtain a predictive model of the migratory patterns and the 
decision models of pastoralists. We are using machine learning methods to determine the 
structure and estimate the parameters of these models, based on field data concerning   
households, water points, and climate patterns. The goal is to help policy makers predict 
the effects of various potential policy interventions and environmental changes, with the 
goal of improving the livelihood outcomes of thousands of pastoralists in these regions. 
The project brings new technical approaches for large structural dynamic discrete choice 
problems, providing computational models that permit both descriptive study and 
predictive policy analysis (Toth et al. 2009).  
 
Other computational sustainability topics in this context include the design of automated 
decision support tools for humanitarian aid in response to catastrophes, famines, and 
natural disasters in developing countries (Barrett et al. 2006, 2008, 2009). The design of 
such systems also requires the development of intuitive and user-friendly interfaces for 
use by general aid workers. 
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Increasing Energy Efficiency and Renewable Energy  
 
Last but not least we mention the implications of climate change on environmental, 
economic, and social systems that have led, for example, to major efforts concerning 
energy, including changes in energy policy in many industrial countries. From a 
computing and information science point of view there are tremendous opportunities to 
help increase energy efficiency, such as through the design of control systems for smart 
energy-efficient buildings, vehicles, and appliances. This research combines work on 
sensor networks with intelligent controls. For example, in smart buildings, heating and 
cooling can be regulated based on real-time office occupancy information obtained using 
motion sensors (Osterlind et al. 2007).  
 
The deployment of large sensor networks is becoming a key tool for environmental 
monitoring. There are several computational challenges concerning the design of such 
networks. For example, when using wireless networks to monitor spatial phenomena, the 
selection of the best sensor placement in order to maximize the information gain while 
minimizing communication costs is a complex optimization problem requiring new 
solution techniques (Krause et al. 2006, 2008).  
 

 

 
 
 

FIGURE 1 Interacting components for biofuel analysis. 

 

In addition to increasing energy efficiency, the development of renewable energy sources 
that are cleaner and generate little or no carbon can have an even greater environmental  
impact. In recent years there has been considerable technological progress in the area of 
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renewable energy sources, such as biofuels and biomass, geothermal, solar, and wind 
power, in part fostered by government incentives. For example in 2007, the Energy 
Independence Act was signed into law, a broad energy bill setting higher fuel economy 
standards for vehicles and requiring an annual production of 36 billion gallons of 
renewable fuels by 2022, a fivefold increase from current ethanol production levels. The 
logistic and planning of such a large-scale domestic based biofuels production system 
leads to complex stochastic optimization problems --- variants of the so-called facility 
location problem --- given its large-scale stochastic input (e.g., feedstock and demand) 
and the need to consider the dynamics of demand and capacity (Shmoys 2004, Shmoys 
and Swami 2006). Finding good solutions for such models can make the difference 
between economic viability and failure.  
 
A broader question concerns the development of computational models to shed light on 
the overall impact of an ethanol based industry considering the interactions between the 
different agents directly or indirectly involved in the process such as households, 
landowners, farmers, ethanol producers, regular gasoline refiners, food producers, and the 
environment (greenhouse gas emissions, water, soil erosion, etc.) (Searchinger 2009; 
Bento and Landry 2009). The challenge is to develop realistic models within the 
macroeconomic framework of so-called general-equilibrium models, in a way in which 
meaningful solutions can still be computed, without imposing strong (unrealistic) 
assumptions. See Figure 1. The traditional approach in model-formulation has focused on 
models in which convexity assumptions have forced unique equilibria, or at the very 
least, that the set of equilibria are themselves convex. This has made their efficient 
algorithmic solution possible, but unfortunately such models do not capture key aspects 
of the systems. Answering these questions will require the development of more complex 
computational decision models through a collaboration between resource economists, 
environmental scientists, and computer scientists.  
 
Finally, a key issue in environmental policy is how to balance individual interests with 
the common good, especially when common property resources are involved, as was so 
eloquently noted by Garrett Hardin in his 1968 Science paper on the “Tragedy of the 
Commons.”  Game theoretic models play a key role in modeling such interactions and the 
effect of competing interests. For example, in the context of natural resources or climate 
change, on the international level, economic incentives may play a big role in whether a 
country is motivated to enter an agreement and then abide by it. Other incentive-based 
policies can help facilitate sustainability challenges on a smaller scale. For example,   the 
introduction of novel markets for various kinds of land conservation activities, poses 
interesting mechanism design problems. Research on capturing multi-agent settings 
requires the development of multi-agent equilibria models and the design of effective 
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mechanisms and policies for the exchange of goods, paying particular attention to their 
computational properties. 
 

RESEARCH AREAS AND THEMES 
 

Research in computational sustainability involves a number of different areas in 
computing and information science and related disciplines. Figure 2 highlights some of 
these areas and interactions. Figure 3 emphasizes the different levels of complexity in 
computational sustainability, often leading to unique and complex large scale problems, 
involving large volumes of data, in highly dynamic and uncertain environment, with 
many interacting components.  
 
From a computational complexity point of view, computational sustainability problems    
are often NP-hard or worse, and problem size scales to several orders of magnitude. 
Given the various sources of complexity of computational sustainability problems, their 
study requires a fundamentally different approach than the traditional computer science 
approach driven mainly by worst-case analysis. We propose a perspective that has not 
traditionally been pursued within computer science, which we refer to as science of 
computation: in this perspective, computational problems are viewed as “natural” 
phenomena and therefore as problems of the natural sciences instead of purely as   
mathematical abstractions or artifacts. In other words, in order to capture the structure 
and properties of complex real-world sustainability computational problems, a scientific 
methodology is required in which principled experimentation plays as prominent a role as 
formal models and analysis, to explore problem parameters and hidden problem structure 
and alleviate the worst-case intractability of many sustainability problems (Gomes and 
Selman 2007). 
 
As our examples showed, the range of problems that fall under Computational 
Sustainability is rather wide, encompassing computational challenges in disciplines as 
diverse as ecology, natural resources, atmospheric science, and biological and 
environmental engineering. Research in Computational Sustainability is therefore 
necessarily an interdisciplinary endeavor, where scientists with complementary skills 
must work together in a collaborative process. 
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FIGURE 2    Research themes in computational sustainability. 
 
 

 

 
FIGURE 3   Increasing levels of complexity in computational sustainability problems. 

 
SUMMARY 

 
Computational Sustainability is a new interdisciplinary field that aims to apply 
techniques from computer science and related fields, such as information science, 
operations research, applied mathematics, and statistics, to help manage the balance 
between environmental, economic, and societal needs for a sustainable future. The focus 
of Computational Sustainability is on developing computational and mathematical 
models, methods, and tools for decision making and policy making concerning the 
management and allocation of resources for sustainable development.  
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