

Computer Models for Medical Diagnosis and Prognostication

Lucila Ohno-Machado, MD, PhD **Division of Biomedical Informatics**

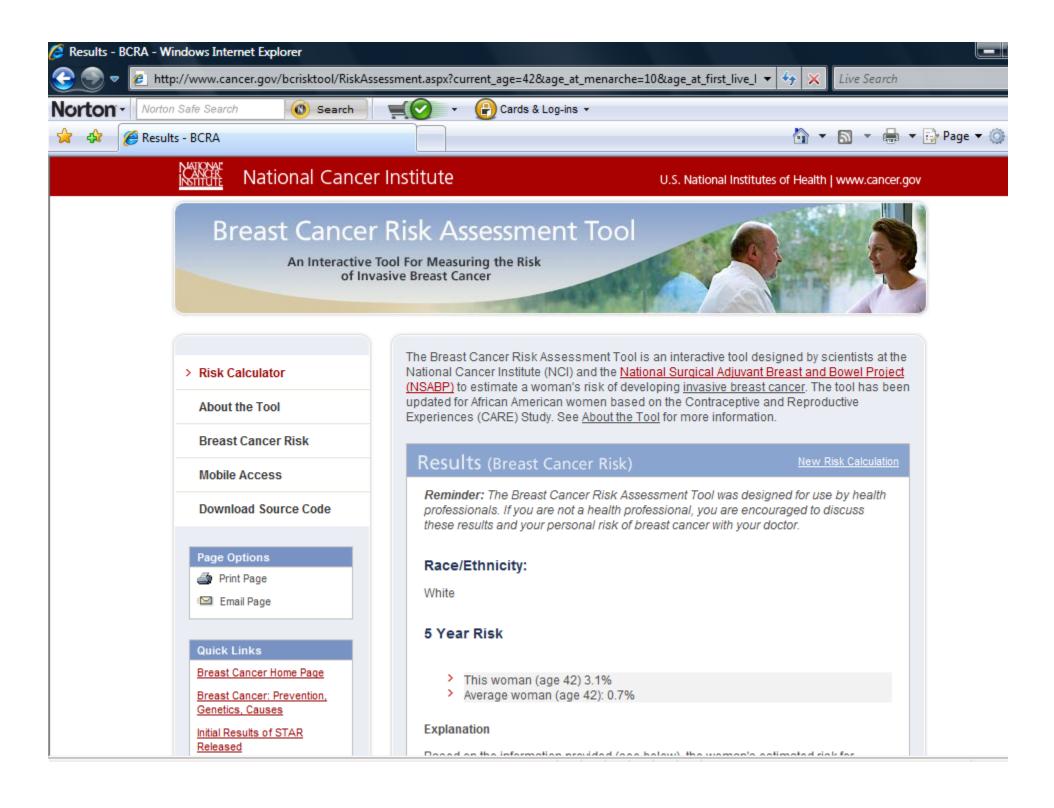
- Clinical pattern recognition and predictive models
- Evaluation of binary classifiers (calibration)
- Ethical implications for clinical practice

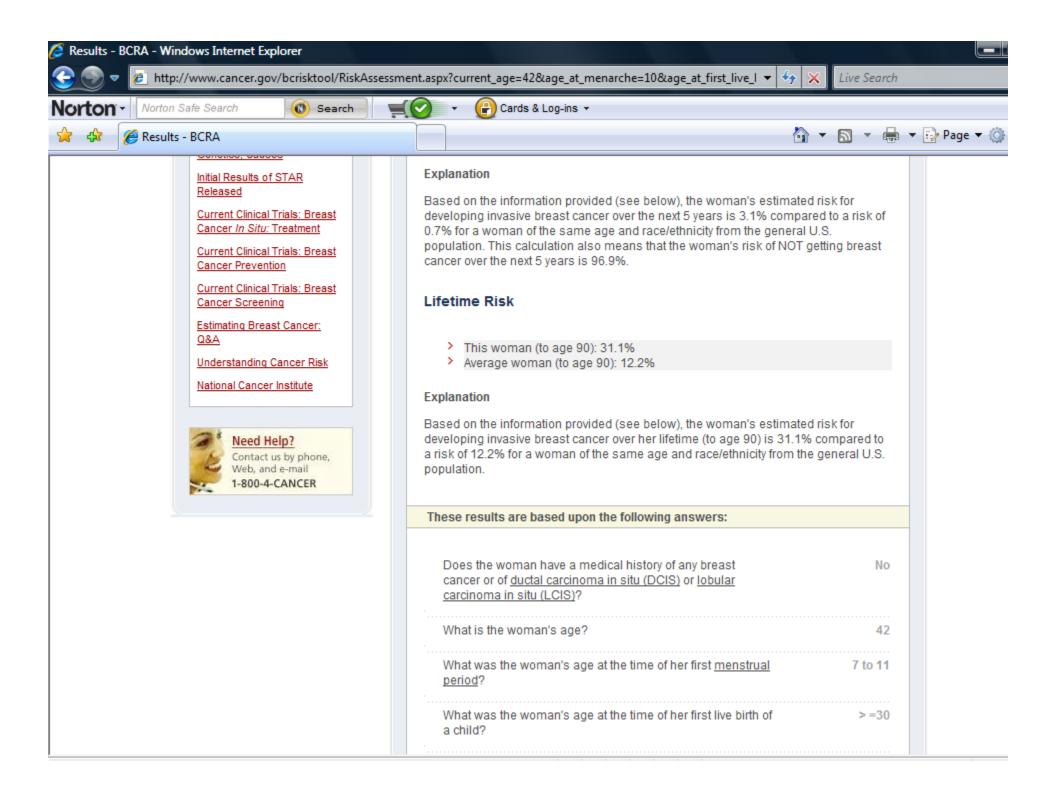
Source: DOE

Computer-Based Models for Medical Diagnosis and Prognostication

Lucila Ohno-Machado, MD, PhD

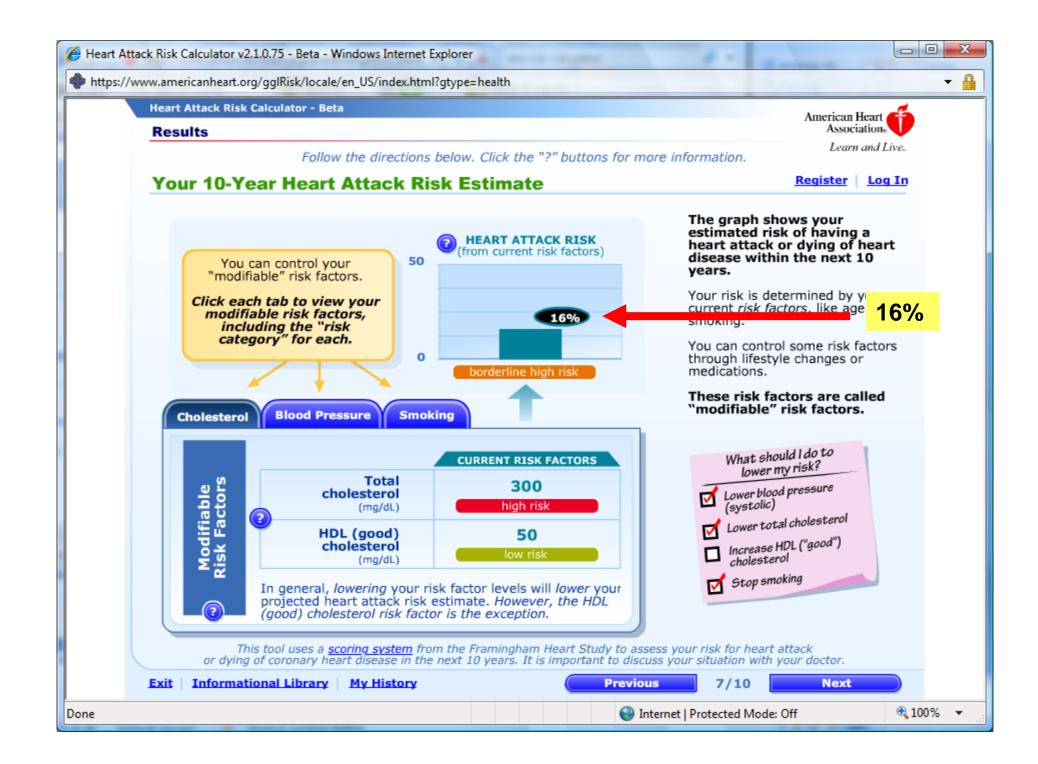
Division of Biomedical Informatics University of California San Diego



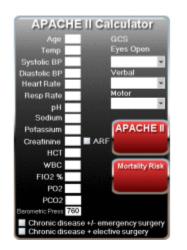

Risk Assessment

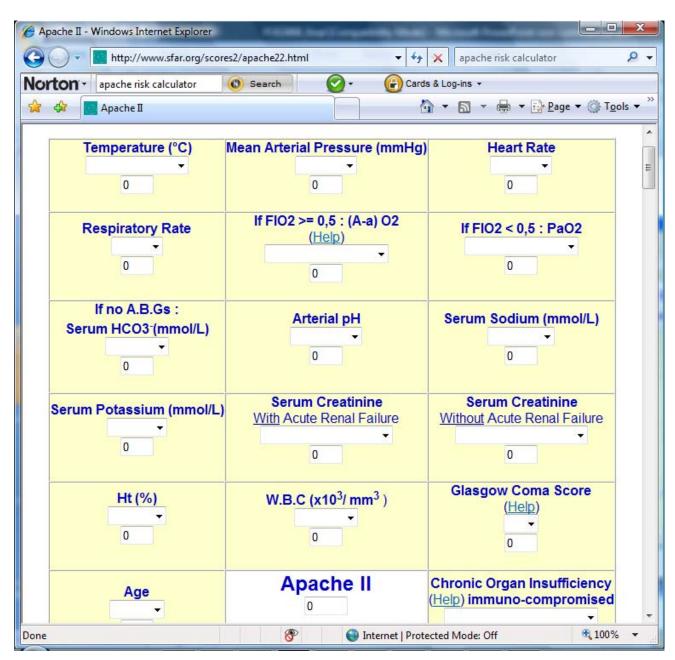
- Popular risk calculators
 - Gail Model (Breast cancer)
 - Framingham Risk Calculator (CVD)
 - APACHE (ICU mortality)

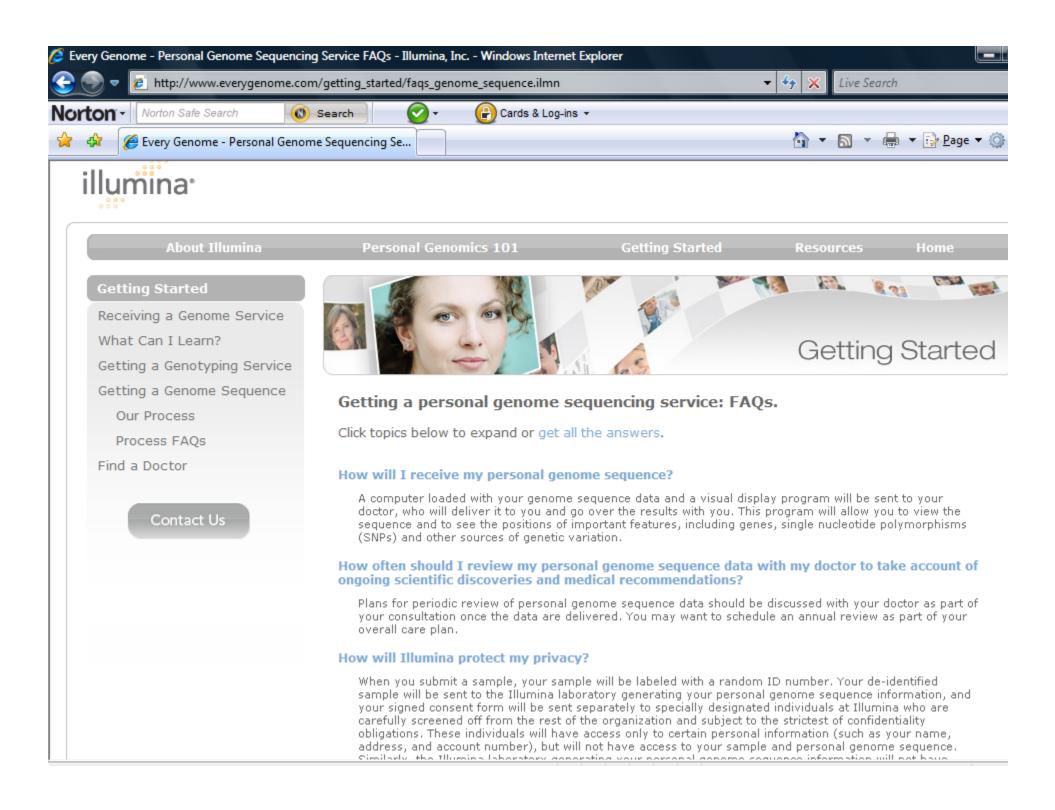
M.I. Probability: Low Risk	High Risk 58 %
Recommendation: (RLL 911 II	nmediately
(Some chest pain is assumed	i to exist.)
What is your age? 55 What is your sex? • Male • Female Do you smoke? • Yes • No Previous angina? • Yes • No Previous M.I.? • Yes • No	Select all that apply: X Pain in Left Arm Pleuritic Sharp Chest Pain X Sweating Nausea Episodic
Calculate	Clear


- Use of individual estimates
 - Prophylaxis for breast cancer
 - Cholesterol management guidelines
 - Continuation of life support

🚱 🕤 🔻 🏄 http://hp2010.nhlbihin.net/atpiii/calculator.asp?usertype=prof 🔹 🍫 🗙 🛛 apache risk calculator	۶ -
Norton - aha risk calculator 💿 Search 💽 - 🕞 Cards & Log-ins -	
🙀 🎲 🌈 10-year CVD Risk Calculator (Risk Assessment To 🏠 🔻 🗟 🔻 🖶 🚽 📴 Page 💌 🍈	T <u>o</u> ols ▼ [≫]
NATIONAL CHOLESTEROL EDUCATION PROGRAM Third Report of the Expert Panel on	<u>^</u>
Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III)	
Risk Assessment Tool for Estimating 10-year Risk of Developing Hard CHD	
(Myocardial Infarction and Coronary Death)	
The <u>risk assessment tool</u> below uses recent data from the Framingham Heart Study to estimate 10-year risk for "hard" coronary heart disease outcomes (myocardial	E
infarction and coronary death). This tool is designed to estimate risk in adults aged	
20 and older who do not have heart disease or diabetes. Use the calculator below to estimate 10-year risk.	
Age: years	
Gender:	
Total Cholesterol: mg/dL	
HDL Cholesterol: mg/dL	
Smoker: No Yes	
Systolic Blood Pressure: mm/Hg	
Currently on any medication to treat high blood pressure. ON Ves	
Calculate 10-Year Risk	
Calculate 10-7ear Kisk	
🖉 🌍 Internet Protected Mode: Off 🔍 10	

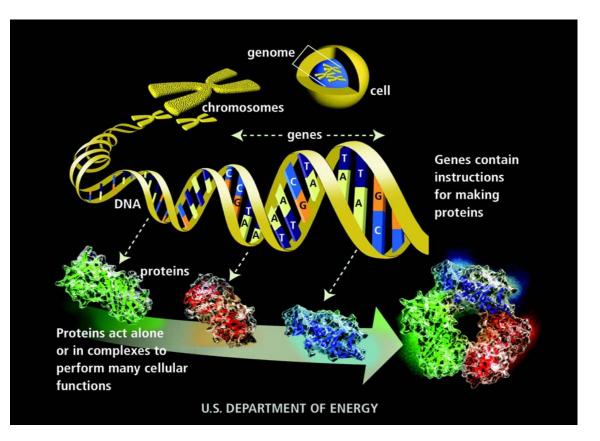

20-Year Risk Calculator Results	- Windows Internet Explorer				x
🕒 🗸 🖉 http://hp2010.nl	hlbihin.net/atpiii/evalData.asp	🗕 😽 🗙 🔤 nhlbi ri	sk calculator	\$	<mark>ب</mark> ۹
Norton - nhlbi risk calculato	r 🕜 Search	📀 - 🛛 🔐 Cards & Lo	g-ins 🔻		
😭 🕸 🌈 10-Year Risk Calcu	lator Results	🐴 🕶 🔊 🔹	🖶 🔻 🔂 <u>P</u> age	▼ ⁽) T <u>o</u> ols	• >>
					<u> </u>
Third Report of	LESTEROL EDUCATION PROGRAM the Expert Panel on				
Risk score results:	luation, and Treatment of High	Blood Cholesterol in Adults (Adult Treatment Pa	inel III)	
Age:	20				
Gender:	male				
Total Cholesterol:	300 mg/dL				
HDL Cholesterol:	50 mg/dL				
Smoker:	Yes				
Systolic Blood Pressure:	180 mm/Hg		000/		≡
On medication for HBP:	Yes		22%		
Risk Score*	22%				
	* The risk score shown wa				
materials, such as ATP III print products, use a point-based system to calculate a risk score that approximates the equation-based one.					3
	lisk score that approximat	es the equation-based one	-		
To interpret the risk score and for specific information about CHD risk assessment as part of					
detection, evaluation, and treatment of high blood cholesterol, see ATP III Executive Summary					
and ATP III At-a-Glance.					-
•					P
	6	Internet Protected Mode: O	ff	🔍 100%	•




APACHE II

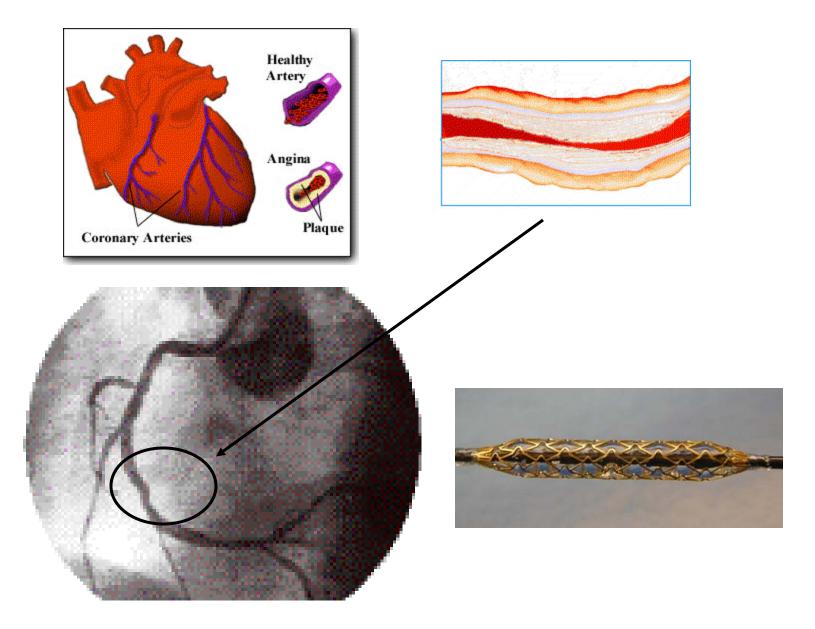
• Mortality in intensive care units (ICUs)

 12 physiologic predictors



Individualized Genome

 How many individual genotypes are needed to predict disease?



Logistic Regression

$$p_{i} = \frac{1}{1 + e^{-(\beta_{0} + \beta_{i}x_{i})}}$$

$$\log\left[\frac{p_i}{1-p_i}\right] = \beta_0 + \beta_i x_i$$

Coronary Angioplasty and Stenting

Risk of death in angioplasty

National average of deaths after angioplasty is 2%, which is stated in the informed consent.

"Informed consent and good clinical practice require a discussion of risks and benefits..."

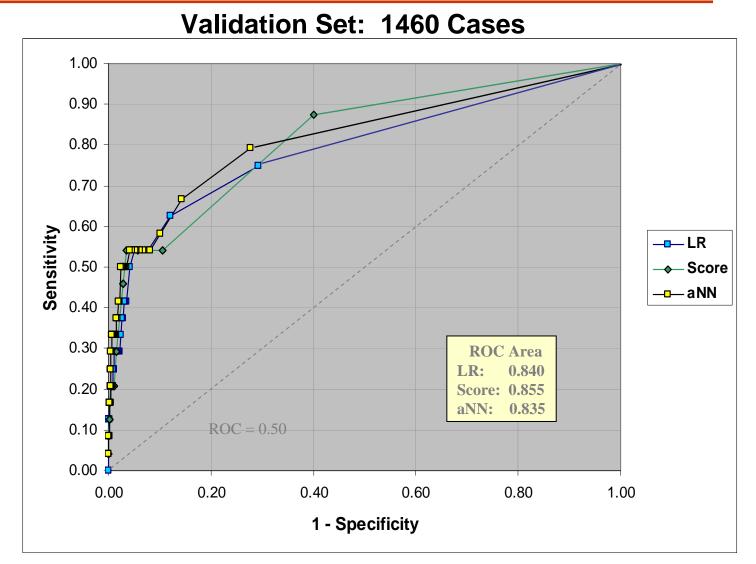
Alexander et al, 52th ACC meeting

Less than 10% of the patients have an estimated risk of death around 2%. Are we lying to the other 90%?

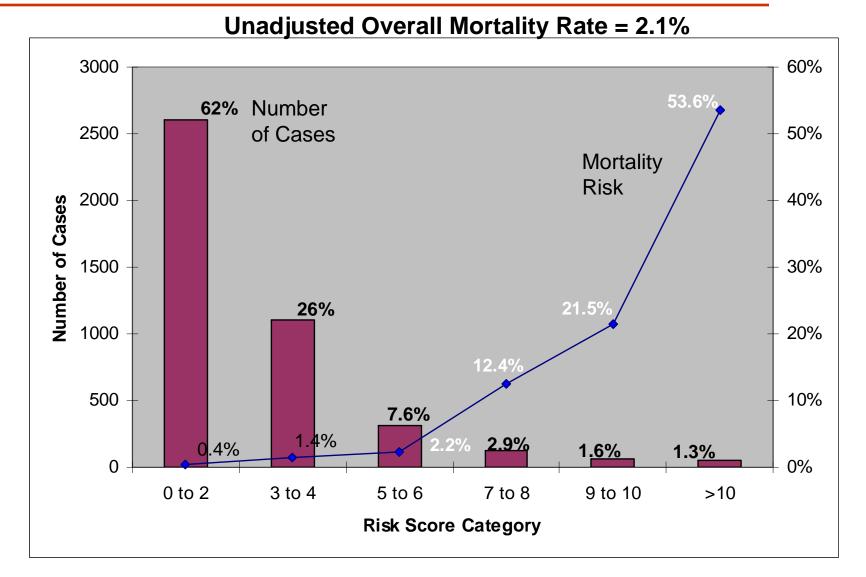
Dataset: Attributes Collected

History	Presentation	Angiographic	Procedural	Operator/Lab
age gender diabetes iddm history CABG baseline creatinine CRI ESRD hyperlipidemia	acute MI primary rescue CHF class angina class cardiogenic shock failed CABG	occluded lesion type (A,B1,B2,C) graft lesion vessel treated ostial	number lesions multivessel number stents stent types (8) closure device gp 2b3a antagonists dissection post rotablator atherectomy angiojet max pre stenosi max post stenos no reflow	device experience daily volume lab device experience unscheduled case
ata Source: Medical Recor Clinician Deriv Other			norenow	

Resnic et al, J Am Col Card 2001; Matheny et al, J Biomed Inf 2005


Study Population: Descriptive Statistics

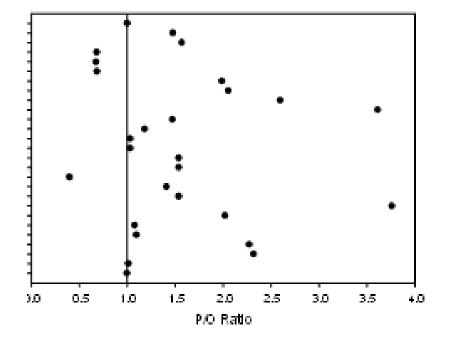
D	evelop	ment Set	Valid	ation Set	-
Cases	2,	804	1,	460	
Women	909	(32.4%)	433	(29.7%)	p=.066
Age > 74yrs	595	(21.2%)	308	(22.5%)	p=.340
Acute MI	250	(8.9%)	144	(9.9%)	p=.311
Primary	156	(5.6%)	95	(6.5%)	p=.214
Shock	62	(2.2%)	20	(1.4%)	p=.058
Class 3/4 CHF	176	(6.3%)	80	(5.5%)	p=.298
gp IIb/IIIa antagonist	1,005	(35.8%)	777	(53.2%)	p<.001
Death	67	(2.4%)	24	(1.6%)	p=.110
Death, MI, CABG (MACE)	177	(6.3%)	96	(6.6%)	p=.739


Multivariate Models

	Logistic Regression Model		_	Prognostic Risk Score Model		Artificial Neu Network	
	Odds Ratio	p-value		beta coefficient	Risk Value		
Age > 74yrs	2.51	0.02		0.921	2		
B2/C Lesion	2.12	0.05		0.752	1		
Acute MI	2.06	0.13		0.724	1		
Class 3/4 CHF	8.41	0.00		2.129	4		
Left main PCI	5.93	0.03		1.779	3		
Ilb/IIIa Use	0.57	0.20		-0.554	-1		
Stent Use	0.53	0.12		-0.626	-1		
Cardiogenic Shock	7.53	0.00		2.019	4		
Unstable Angina	1.70	0.17		0.531	1		
Tachycardic	2.78	0.04		1.022	2		
Chronic Renal Insuf.	2.58	0.06		0.948	2		

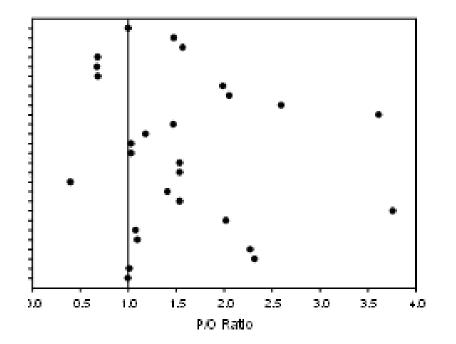
Logistic Regression, Score, and Neural Networks

Risk Score of Death



🚱 🕤 🔻 🏄 http://hp2010.nhlbihin.net/atpiii/calculator.asp?usertype=prof 🔹 🍫 🗙 🛛 apache risk calculator	۶ -
Norton - aha risk calculator 💿 Search 💽 - 🕞 Cards & Log-ins -	
🙀 🎲 🌈 10-year CVD Risk Calculator (Risk Assessment To 🏠 🔻 🗟 🔻 🖶 🚽 📴 Page 💌 🍈	T <u>o</u> ols ▼ [≫]
NATIONAL CHOLESTEROL EDUCATION PROGRAM Third Report of the Expert Panel on	<u>^</u>
Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III)	
Risk Assessment Tool for Estimating 10-year Risk of Developing Hard CHD	
(Myocardial Infarction and Coronary Death)	
The <u>risk assessment tool</u> below uses recent data from the Framingham Heart Study to estimate 10-year risk for "hard" coronary heart disease outcomes (myocardial	E
infarction and coronary death). This tool is designed to estimate risk in adults aged	
20 and older who do not have heart disease or diabetes. Use the calculator below to estimate 10-year risk.	
Age: years	
Gender:	
Total Cholesterol: mg/dL	
HDL Cholesterol: mg/dL	
Smoker: No Yes	
Systolic Blood Pressure: mm/Hg	
Currently on any medication to treat high blood pressure. ON Ves	
Calculate 10-Year Risk	
Calculate 10-7ear Kisk	
🖉 🌍 Internet Protected Mode: Off 🔍 10	

External Validations for CVD Models


Model/Cohort	AKA	Year Published	External
			Validations
Framingham Risk Score	FRS	Dawber et al, 1951 ⁸	1
Framingham Risk Score	FRS	Kannel et al, 1976 ⁹	4
Framingham Risk Score	FRS	Anderson et al, 1991 ²	29
Glostrup	Glostrup	Schroll et al, 1992 ¹⁰	1
European Society of Cardiology	ESC	Pyorala et al, 1994 ¹¹	1
Framingham Risk Score	FRS	Wilson et al, 1998 ¹²	32
Framingham Risk Score for ATP III	FRS ATP III	ATP III, 2001 ¹³	5
Framingham Risk Score	FRS	D'Agostino et al, 2001 ¹⁴	9
UK Prospective Diabetes Study	UKPDS	Stevens et al, 2001 ¹⁵	1
Framingham Point System	FPS	ATP III, 2002 ¹	2
Prospective Cardiovascular Munster Study	PROCAM	Assman et al, 2002 ¹⁶	6
Finnish Diabetes Risk Score	FINDRISC	Lindstrom et al, 2003 ¹⁷	6
Systematic Coronary Risk Evaluation	SCORE	Conroy et al, 2003 ¹⁸	8
Diabetes Epidemiology: Collaborative Analysis of Diagnostic Criteria in Europe	DECODE	Balkau et al, 2004 ¹⁹	1
ASSessing cardiovascular risk using SIGN guidelines	ASSIGN	SIGN, 2007 ²⁰	2
		Total	108

Predicted / Observed

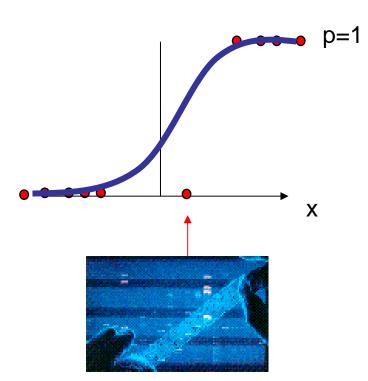
Framingham models tested on European populations

Predicted / Observed

Framingham models tested on European populations

European models tested on North American populations

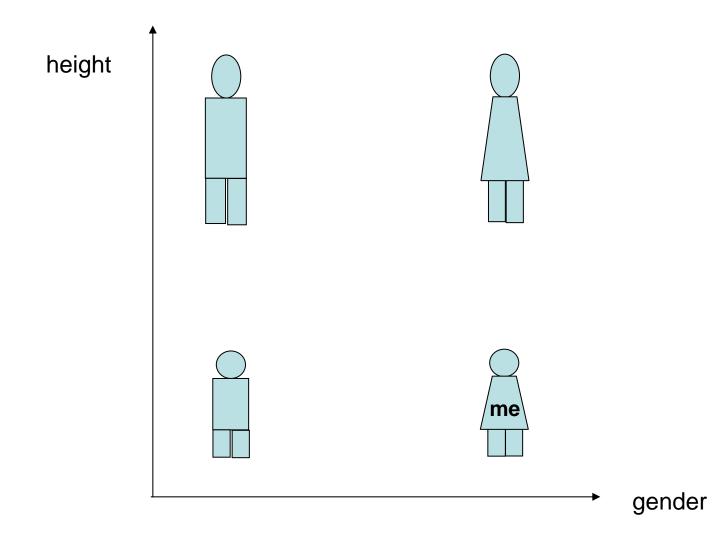
Questions

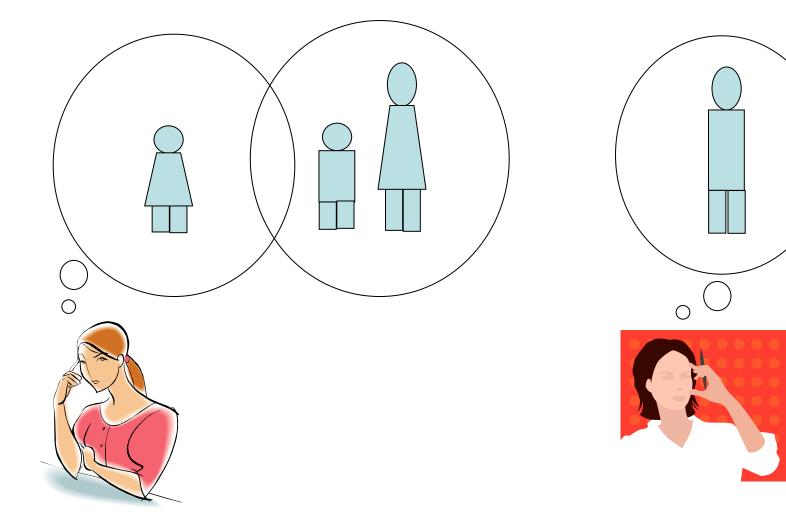

• Which model is right?

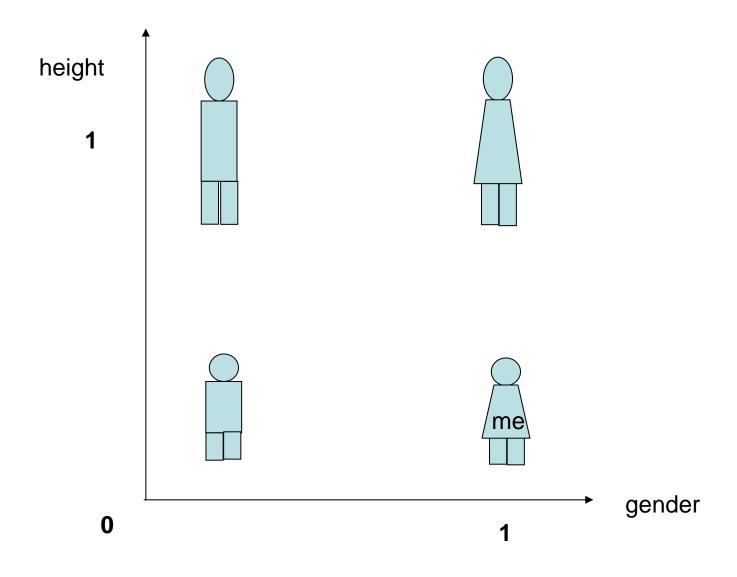
- "True" probability would be the gold-standard
 What is the true probability?
- Are the models adequate in discrimination and calibration?

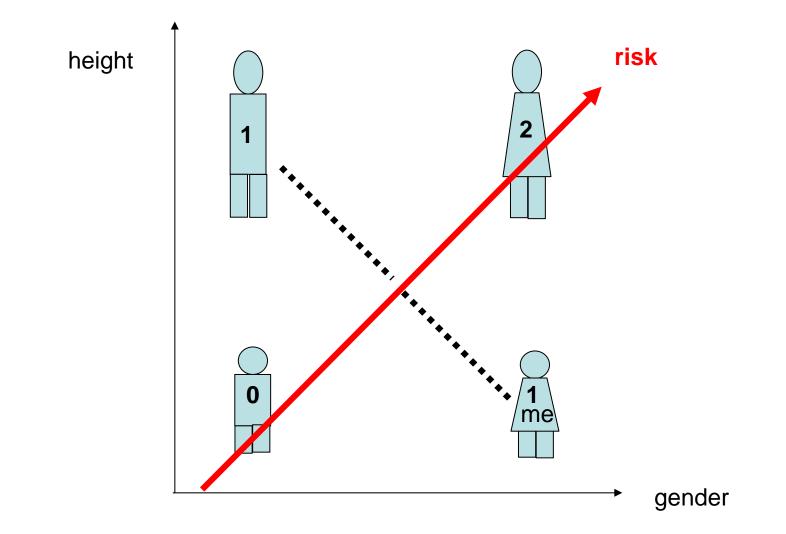
Your Risk

"this program shows the estimated health risks of people with your same age, gender, and risk factor levels"


🕙 http://www.ameri	ricanheart.org/presenter.jhtml?identifier=3003900&_requestid=11027069 - Microsoft Inter	. 💶 🗖 🔀
<u>File E</u> dit <u>V</u> iew F <u>a</u> vi	vorites <u>T</u> ools <u>H</u> elp	
🚱 Back 🔹 🕥 🕤	💌 🖻 🏠 🔎 Search 🤺 Favorites 🧭 🔗 - 🌺 🔞 - 🛄 🔨 🦓	🔁 -
Address 🙆 http://www.a	americanheart.org/presenter.jhtml?identifier=3003900&_requestid=11027069	🔽 🄁 Go
Google 🕞 - aha framir	ningham calculat 🛛 Go 🐗 🌮 🗲 😭 Bookmarks 🗕 🔊 23 blocked 🛛 🍄 Check 👻 🔨 AutoLink 👻 🌺	🔘 Settings 🗸
ADVANCED SEARCH	SEARCH) DONATE HELP CONTACT SITE INDEX HOME American Heat October 17, 2006	
Heart Attack/Stroke Warning Signs	Learn and	ł Live∞
American Stroke Association		
Diseases & Conditions	Information about your "this means that 5 of 100 people	le
Children's Health	Gender:	
l	Age: with this level of risk will have a	3
CPR & ECC	Total Cholesterol: heart attack or die"	
En en en eñ el	ADE cholesterol.	
En español	Systolic Blood Pressure: 180 pm Hg	
Healthy Lifestyle	Medication Treatment for High Blood Pressure:	
	Current Smoker: Yes	
Advocacy: You're the Cure	*Risk Score: Your estimated risk level is 5%.	
Fund Raising	This means that 5 of 100 people with this level of risk will have a heart attack or die from coronary heart disease (CHD) in the next 10 years.	
Publications & Resources		
Heart & Stroke Encyclopedia	to the Association's <u>Heart Attack Risk Factors</u> and <u>Stroke Risk Factors</u> .	~
<	*The risk score shown is derived on the basis of an equation.	
🙆 Done	😤 🧐 Internet	

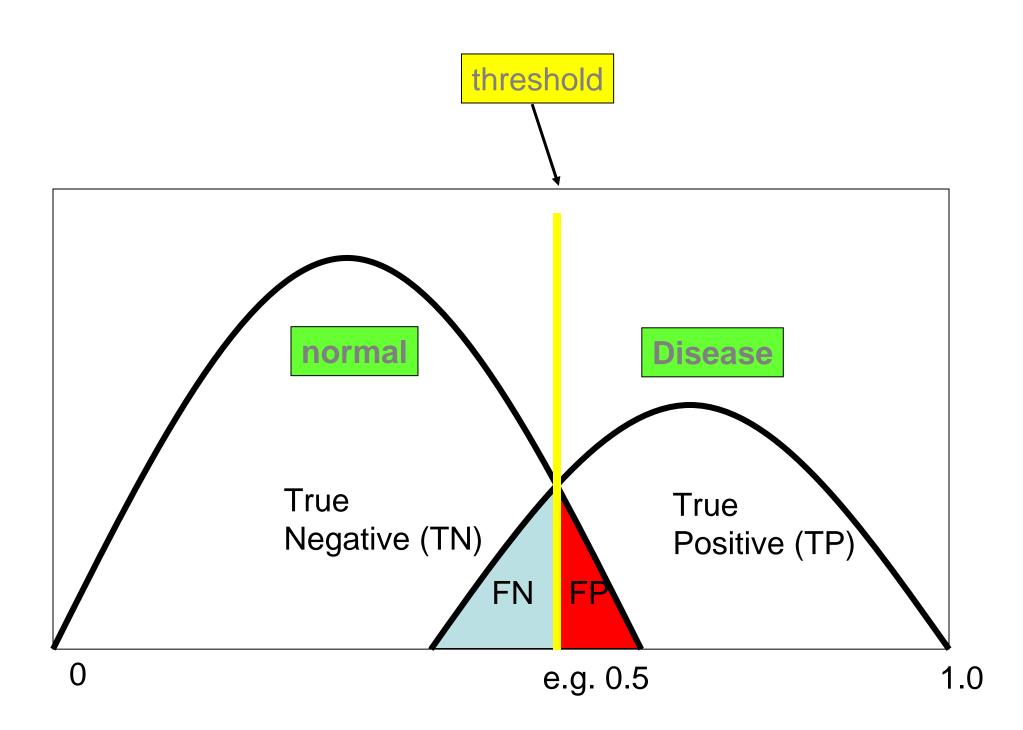

Input space

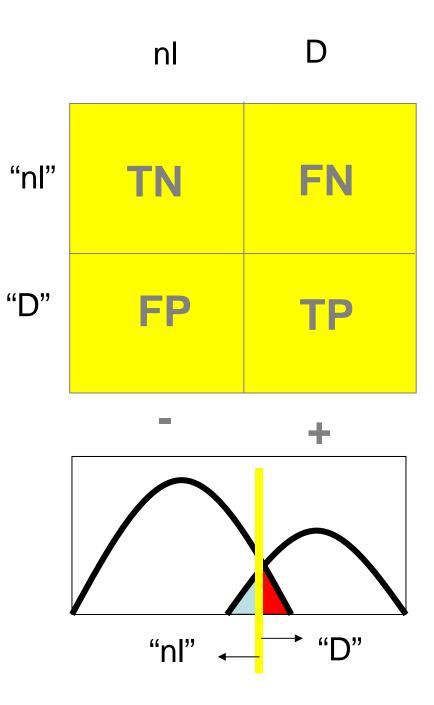

me


"people with your same age, gender, and risk factor levels" "people with this level of risk"

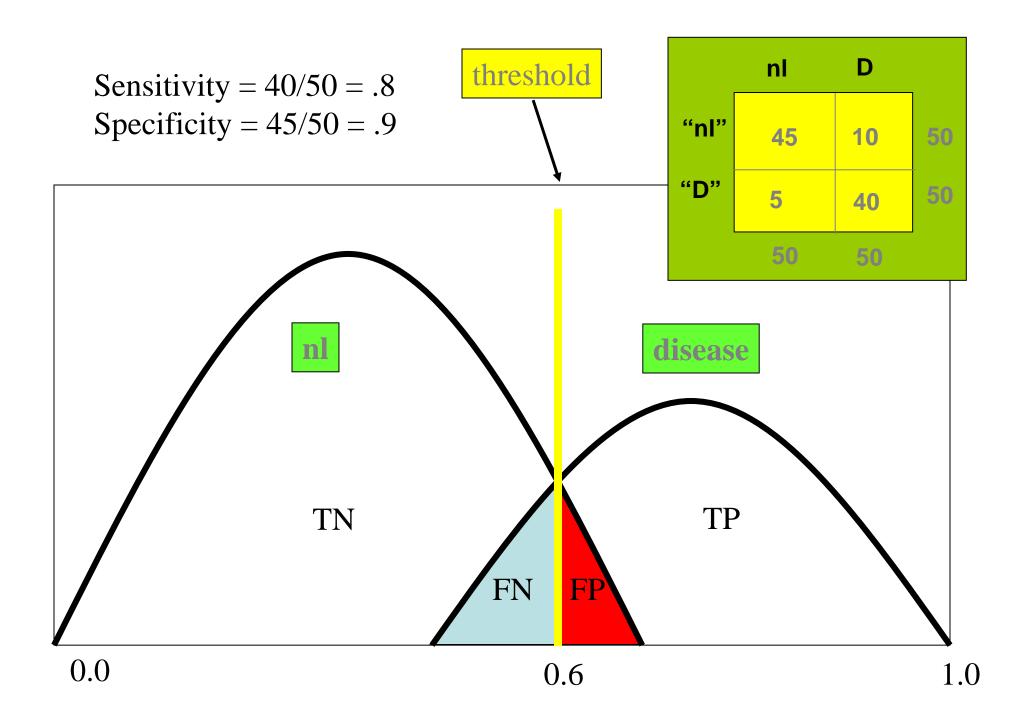
Output space

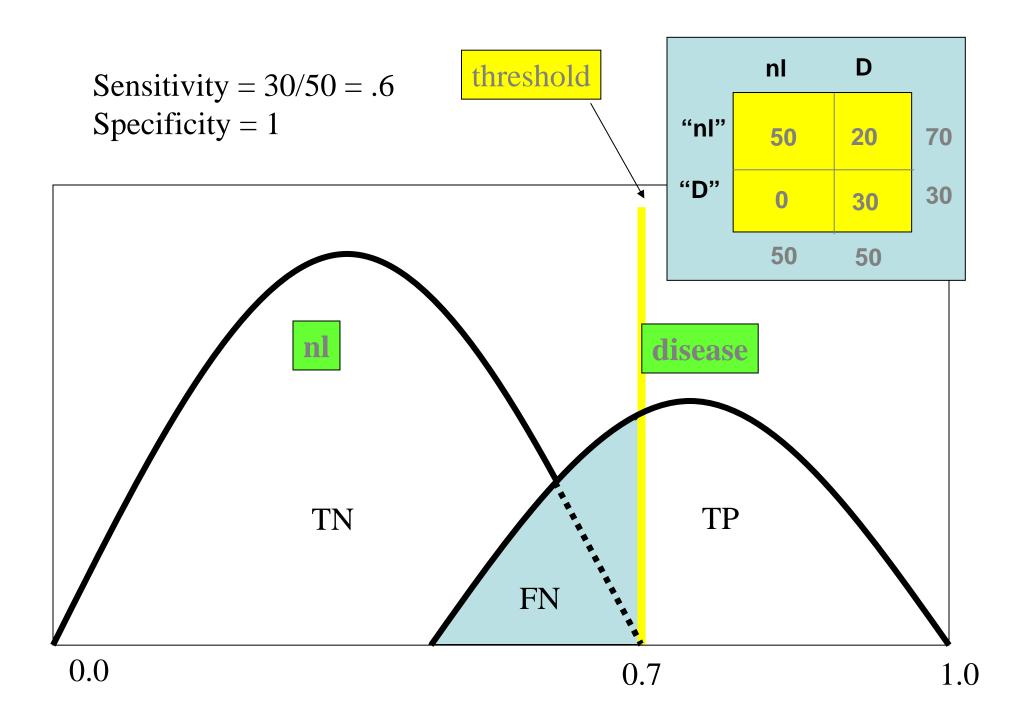
Evaluation of Predictive Models

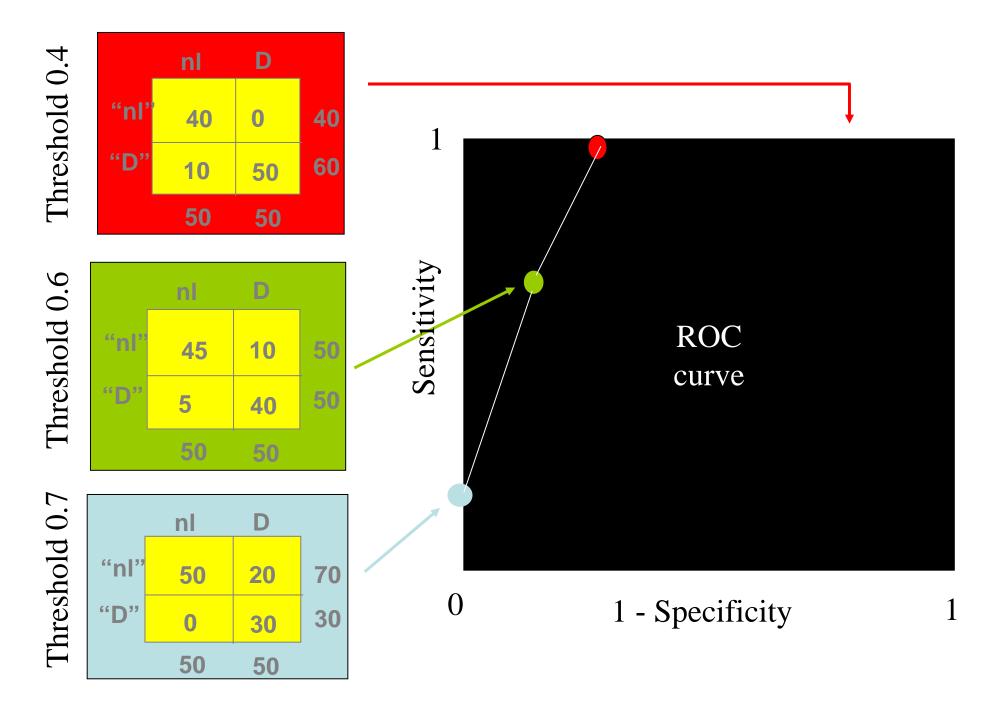

- Error
- Discrimination
 - Area under ROC
- Calibration
 - Plot of groups: observed vs expected
 - Hosmer-Lemeshow statistic

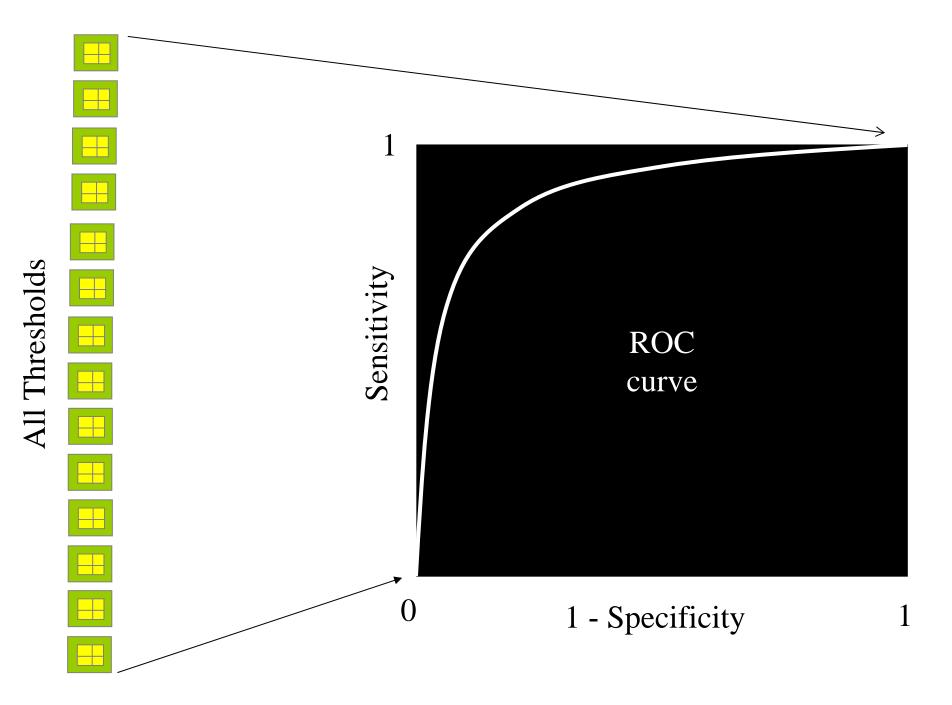

Discrimination of Binary Outcomes

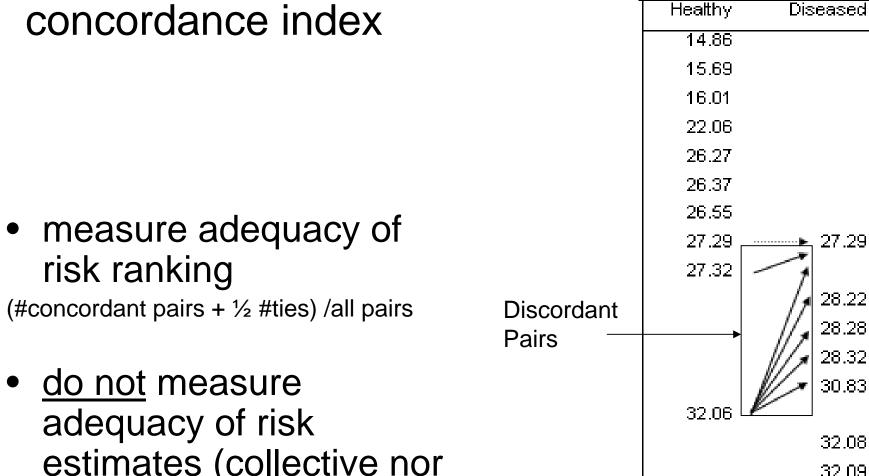
• Estimate and Observed outcome ("gold standard", "true")


Estimate	True
0.3	0
0.2	0
0.5	1
0.1	0

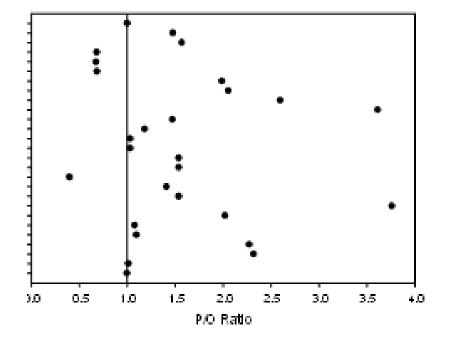

 Classification into category 0 or 1 is based on thresholded estimates (e.g., if estimate > 0.5 then consider "positive")







Areas Under the ROC curve

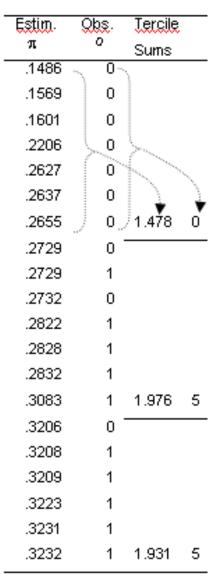

32.23

32.31

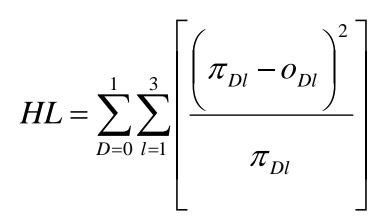
32.32

estimates (collective nor individual)

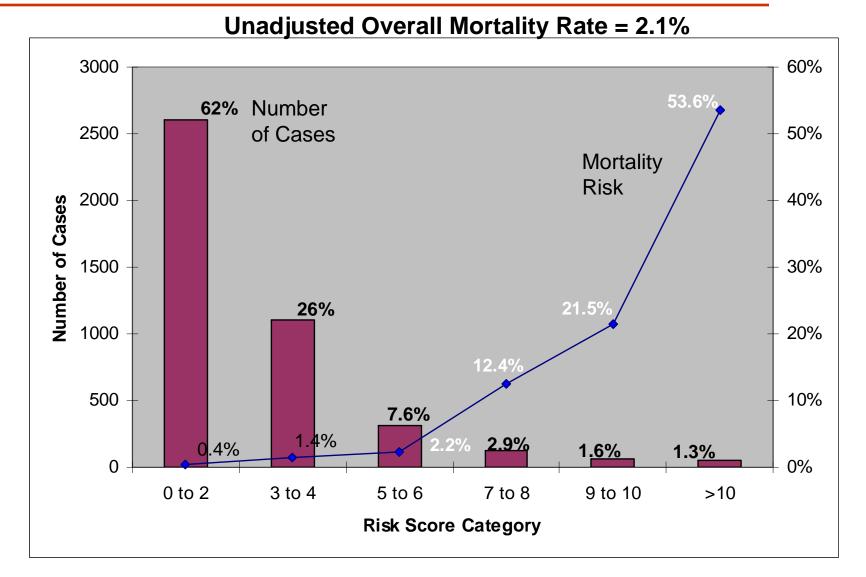
Predicted / Observed



Framingham models tested on European populations


Calibration

- Measures how close the average estimate is to the observed proportion
- Goodness-of-fit
 - Hosmer Lemeshow
 statistics



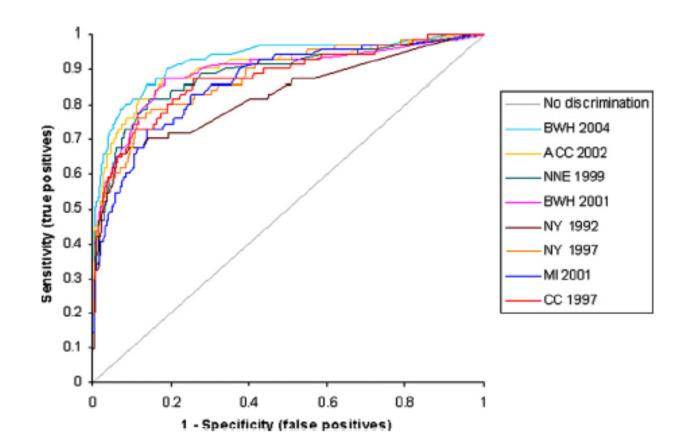
Calibration

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	D = 0					D =	1	
n Sums n Sums .1486 0 .8514 1 .1569 0 .8431 1 .1601 0 .8399 1 .206 0 .7794 1 .2637 0 .7363 1 .2637 0 .7345 1 5.522 .2637 0 .7345 1 5.522 .2729 0 .7271 1 .7272 .2729 0 .7271 0 .7273 .2729 1 .7271 0 .7273 .2729 1 .7271 0 .7273 .2729 1 .7271 0 .7273 .2822 1 .7178 0	AAAAAAA	TAXA A	Tercile	i			Tercile	
.1569 0 .8431 1 .1601 0 .8399 1 .206 0 .7794 1 .2627 0 .7373 1 .2637 0 .7363 1 .2655 0 1.478 0 .7363 .2655 0 1.478 0 .7363 .2655 0 1.478 0 .7363 .2729 0 .7271 1			Sums			0	Sums	
.1601 0 .8399 1 .2206 0 .7794 1 .2627 0 .7363 1 .2637 0 .7363 1 .2655 0 1.478 0 .7363 1 .2655 0 1.478 0 .7363 1	.1486	~_ 0-	1		.8514	1÷		
2206 0 .7794 1 2627 0 .7373 1 2637 0 1.478 0 .7363 1 2655 0 1.478 0 .7345 1 5.522 7 2729 0 .7271 1	.1569	0			.8431	1		
2627 0 .7373 1 2637 0 1.478 0 .7363 1 2655 0 1.478 0 .7345 1 5.522 7 2729 0 .7271 1	.1601	0			.8399	1		
2637 0 .7363 1 .2655 0 1.478 0 .7345 1 5.522 7 .2729 0 .7271 1 .7271 0 .72732 0 .7268 1 .72732 0 .7268 1 .72732 0 .7268 1 .72732 0 .7268 1 .72732 0 .7268 1 .72732 0 .7268 1 .72732 0 .7268 1 .72732 0 .7268 1 .7178 0 .72832 1 .7178 0 .72832 1 .7172 0	.2206		>~		.7794	51	×	
.2655 0 1.478 0 .7345 1 5.522 7 .2729 0 .7271 1 .7271 0 .7271 1 .2729 1 .7271 0 .7271 0 .7273 0 .7268 1 .7273 0 .7268 1 .7268 1 .7268 1 .7178 0 .7178 0 .7178 0 .7172 0 .7173 0 .7173 0 .7174 0 .7174 0 .7174 0 .7174 0 .7174 0 .7174 0 .7174 0 .7174 0 .	.2627	- O			.7373	1	1	<
.2729 0 .7271 1 .2729 1 .7271 0 .2732 0 .7268 1 .2822 1 .7178 0 .2828 1 .7178 0 .2832 1 .7178 0 .2832 1 .7178 0 .2832 1 .7172 0 .3083 1 1.976 5 .7168 0 5.051 2 .3083 1 1.976 5 .7168 0 5.051 2 .3206 0 .6794 1 3208 1 .6792 0 3209 1 .6769 0 3231 1 .6768 0 4.069 1 .4L C 15.54 2637	0		÷	.7363	1		Ì
.2729 1 .7271 0 .2732 0 .7268 1 .2822 1 .7178 0 .2828 1 .7178 0 .2832 1 .7172 0 .2832 1 .7172 0 .3083 1 1.976 5 .7168 0 5.051 2 .3083 1 1.976 5 .7168 0 5.051 2 .3083 1 1.976 5 .7168 0 5.051 2 .3206 0 . .6794 1 . . .3209 1 . .6791 0 . . .3231 1 . .6769 0 . .3232 1 1.931 5 .6768 0 4.069 1 .4L C 15.54 2655	J 0,	1.478	Ő	.7345	J 1,	5.522	Ź
.2732 0 .7268 1 . .2822 1 .7178 0 . .2828 1 .7178 0 . .2832 1 .7172 0 . .2832 1 .7172 0 . .3083 1 1.976 5 .7168 0 5.051 2 .3206 0 . .6794 1 3208 1 . .6792 0 3209 1 . .6777 0 3231 1 . .6769 0 3232 1 1.931 5 .6768 0 4.069 1 .3232 1 1.931 5 .6768 0 4.069 1	.2729	0			.7271	1		
.2822 1 .7178 0 .2828 1 .7178 0 .2832 1 .7172 0 .3083 1 1.976 5 .7168 0 5.051 2 .3083 1 1.976 5 .7168 0 5.051 2 .3083 1 1.976 5 .7168 0 5.051 2 .3206 0 .6794 1	.2729	1			.7271	0		
.2828 1 .7178 0 .2832 1 .7172 0 .3083 1 1.976 5 .7168 0 5.051 2 .3083 1 1.976 5 .7168 0 5.051 2 .3206 0 . .6794 1 . . .3208 1 . .6792 0 . . .3209 1 . .6791 0 . . .3231 1 . .6769 0 . . .3232 1 1.931 5 .6768 0 4.069 1	.2732	0			.7268	1		
.2832 1 .7172 0 .3083 1 1.976 5 .7168 0 5.051 2 .3206 0 .6794 1	.2822	1			.7178	0		
.3083 1 1.976 5 .7168 0 5.051 2 .3206 0 .6794 1 . .6794 1 . .3208 1 .6792 0 3209 1 . .6791 0 3223 1 . .6777 0 3231 1 . .6769 0 3232 1 1.931 5 .6768 0 4.069 1 .4009 1	.2828	1			.7178	0		
.3206 0 .6794 1 .3208 1 .6792 0 .3209 1 .6791 0 .3223 1 .6777 0 .3231 1 .6769 0 .3232 1 1.931 5 .6768 0 4.069 1	.2832	1			.7172	0		
.3208 1 .6792 0 .3209 1 .6791 0 .3223 1 .6777 0 .3231 1 .6769 0 .3232 1 1.931 5 .6768 0 4.069 1 HL C 15.54	.3083	1	1.976	5	.7168	0	5.051	2
.3209 1 .6791 0 .3223 1 .6777 0 .3231 1 .6769 0 .3232 1 1.931 5 .6768 0 4.069 1 HL C 15.54	.3206	0			.6794	1		
.3223 1 .6777 0 .3231 1 .6769 0 .3232 1 1.931 5 .6768 0 4.069 1 HL C 15.54	.3208	1			.6792	0		
.3231 1 .6769 0 .3232 1 1.931 5 .6768 0 4.069 1 HL C 15.54	.3209	1			.6791	0		
.3232 1 1.931 5 .6768 0 4.069 1 HL C 15.54	.3223	1			.6777	0		
HL C 15.54	.3231	1			.6769	0		
	.3232	1	1.931	5	.6768	0	4.069	1
р 0.049					HLC		15.54	
					р		0.049	

Risk Score of Death

Interventional Cardiology Models

	-		1				
Model	Dates		Location	Sample	AUC	HL(p)	Validation type
NNE [22] 1999	1/1/1994	12/31/1996	NH, ME, MA, VT (7)	15331	0.88	0.09	Bootstrap resampling
NY [23] 1992 NY [24] 1997	1/1/1991 1/1/1991	6/30/1991 12/31/1994	NY NY	5827 62670	0.884 0.892	NA 0.11	Subset significance Subset significance
MI [25] 2001	10/1/1999	8/30/2000	Detroit, MI	10796	0.90	0.5	Training/test
ACC [26] 2002	1/1/1998	9/30/2000	National	100253	0.89	0.133	Training/test
BWH [28] 2001	1/1/1997	12/31/1999	Boston, MA	2804	0.86	0.11	Training/test
CC [27] 1997	1/11993	12/31/1994	Cleveland, OH (5)	12985	0.846	NA	Bootstrap resampling


Summary of the training datasets for the models used in this study

Sample, sample size. AUC, area under the receiver operating characteristic. HL(p), Hosmer-Lemeshow p value.

Validation

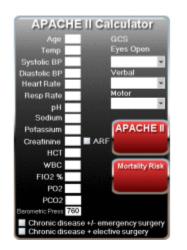
• 5278 patients from BWH (2001-2004) (external validation set)

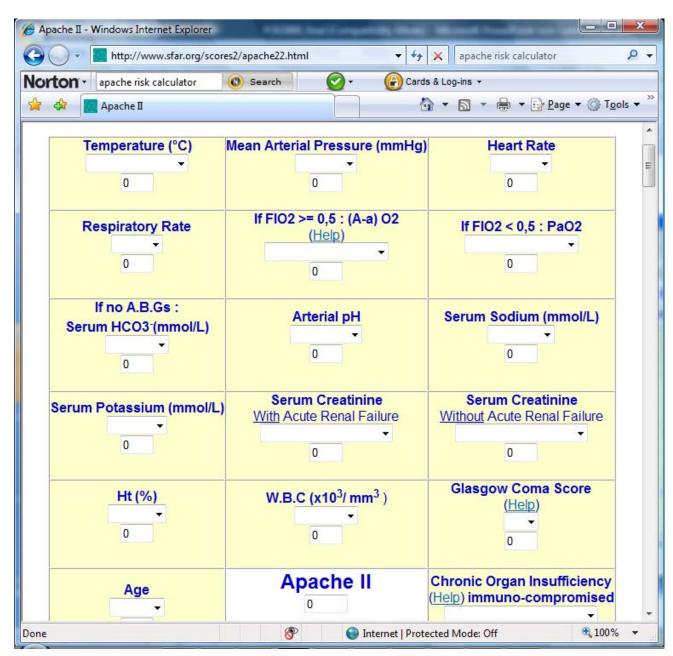
• Comparisons use Areas under the ROC curve (AUC) and the Hosmer-Lemeshow goodness-of-fit statistic (deciles)

Summary of discrimination and calibration performance for each model

Curve	Deaths	AUC	95% CI	HL χ^2	95% CI	$\operatorname{HL}(p)$
NY 1992	96.7	0.82	0.76-0.88	31.1	13.9-50.0	< 0.001
NY 1997	61.6	0.88	0.81-0.92	32.2	16.4-45.5	< 0.001
CC 1997	78.8	0.88	0.82-0.93	27.8	19.6-38.7	< 0.001
NNE 1999	56.2	0.89	0.84-0.94	45.9	31.9-67.4	< 0.001
MI 2001	61.8	0.86	0.81 - 0.90	30.4	16.7-43.1	< 0.001
BWH 2001	136.1	0.89	0.84-0.93	39.7	23.2-73.3	< 0.001
ACC 2002	49.9	0.90	0.84-0.95	42.0	24.9-63.3	< 0.001
BWH 2004	70.5	0.93	0.89-0.96	7.61	1.5 - 14.2	0.473

Calibration


Are predictions obtained from external models good for individual counseling?


Curve	HL χ^2	95% CI	HL(p)	95% CI
NY 1992	31.1	13.9-50.0	< 0.001	< 0.001-0.003
NY 1997	32.2	16.4-45.5	< 0.001	< 0.001 - 0.004
CC 1997	27.8	19.6-38.7	< 0.001	< 0.001 - 0.013
NNE 1999	45.9	31.9-67.4	< 0.001	$<\!0.001 - \!<\!0.001$
MI 2001	30.4	16.7-43.1	< 0.001	< 0.001 - 0.011
BWH 2001	39.7	23.2-73.3	< 0.001	< 0.001 - 0.001
ACC 2002	42.0	24.9-63.3	< 0.001	< 0.001 - 0.002
BWH 2004	7.61	1.5-14.2	0.473	0.073-0.992

APACHE II

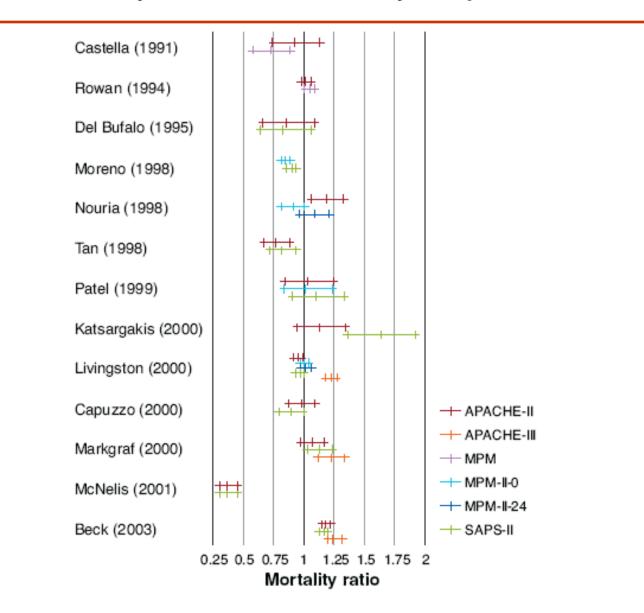
 Mortality in intensive care units (ICUs)

 12 physiologic predictors

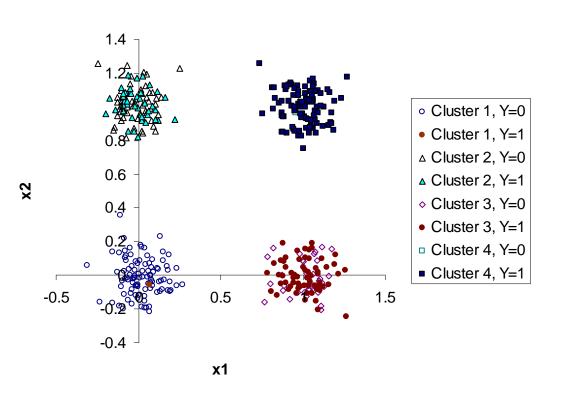
Author	AP-II	MPM ₀	MPM ₂₄	SAPS	AP-III	SAPS-II	MPM-II ₀	MPM-II ₂₄
Castella (86)	0.867	0.865						
Rowan (87)	0.830	0.740						
Wilairatana (88)	0.723			0.710	0.694			
Del Bufalo (89)	0.808					0.735		
Castella (90) ^a	0.852	0.773	0.825	0.798	0.866			
Castella (90) ^b	0.857	0.778	0.815	0.799		0.855	0.815	0.833
Moreno (91)						0.822	0.785	
Nouira (92)	0.820					0.840	0.850	0.882
Tan (93)	0.880					0.870		
Patel (94)	0.702					0.672		0.695
Vassar (95)	0.870				0.890			
Katsaragakis (96)	0.839					0.870		
Livingston (97)	0.763				0.795	0.784	0.741	0.791
Capuzzo (98)	0.805					0.816		
Markgraf (99)	0.832				0.846	0.846		
Beck (100)	0.835				0.867	0.852		

Summary of all comparison studies in terms of discrimination (AUC)

a = Full sample, b = validation sample, AP = APACHE.

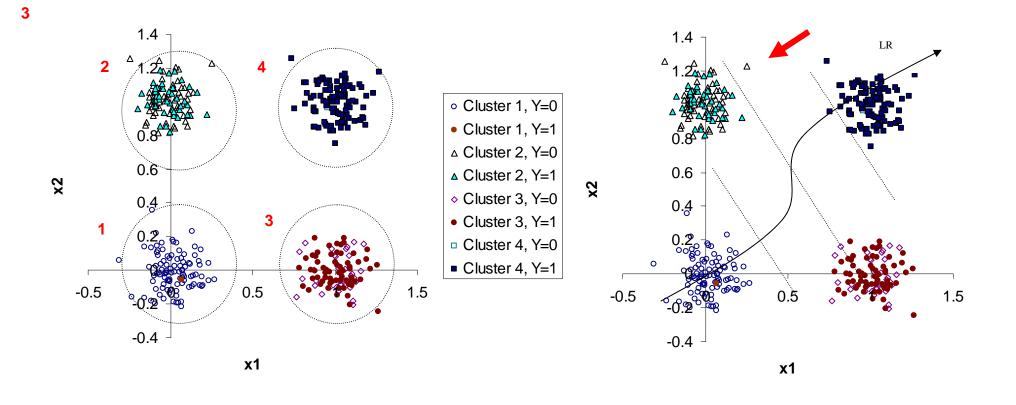

Summary of HL-GOF H and C statistics. X^2 values and degrees of freedom are listed where available, *p* values are listed otherwise.

HL-H								
Author	AP-II	MPM ₀	MPM ₂₄	SAPS	AP-III	SAPS-II	MPM-II ₀	MPM-II ₂₄
Castella (86)	9.42	59.25					ě.	
Rowan (87)	80.66 (8df)						2514.86 (8df)	
Del Bufalo (89)	7.73 (7df)					14.84 (7df)		
Castella (90) ^a	p < 0.001	p < 0.001	p < 0.001					
Castella (90) ^b	p = 0.005	p < 0.001	p < 0.001			p = 0.024	p = 0.072	p = 0.093
Moreno (91)						218.2 (10df)	437.1 (10df)	
Nouira (92)	32.15 (10df)					76.89 (10df)	38 (10df)	19.9 (10df)
Patel (94)	14.33					22.58	Concernent Concernent Concernent	20.7
Katsaragakis (96)	16.56 (8df)					77.54 (9df)		
Capuzzo (98)	3.87 (10df)					7.62 (10df)		
Markgraf (99)	11.8 (8df)				48.4 (8df)	20.5 (8df)		
				HL-C				
Rowan (87)	57.25 (8df)						1737.41 (8df)	
Castella (90) ^a	p < 0.001	p < 0.001	p < 0.001					
Castella (90) ^b	p = 0.025	p < 0.001	p < 0.001			p = 0.102	p = 0.015	p = 0.026
Moreno (91)						208.4 (10df)	368.2 (10df)	
Nouira (92)	25.95 (10df)					73.78 (10df)	36.66 (10df)	29.59 (10df)
Tan (93)	43.96					49.06		
Katsaragakis (96)	18.14 (8df)					60.48 (9df)		
Livingston (97)	67.41					142.03	451.85	100.77
Capuzzo (98)	5.05 (10df)					9.32 (10df)		
Beck (100)	232.1				443.3	287.5		

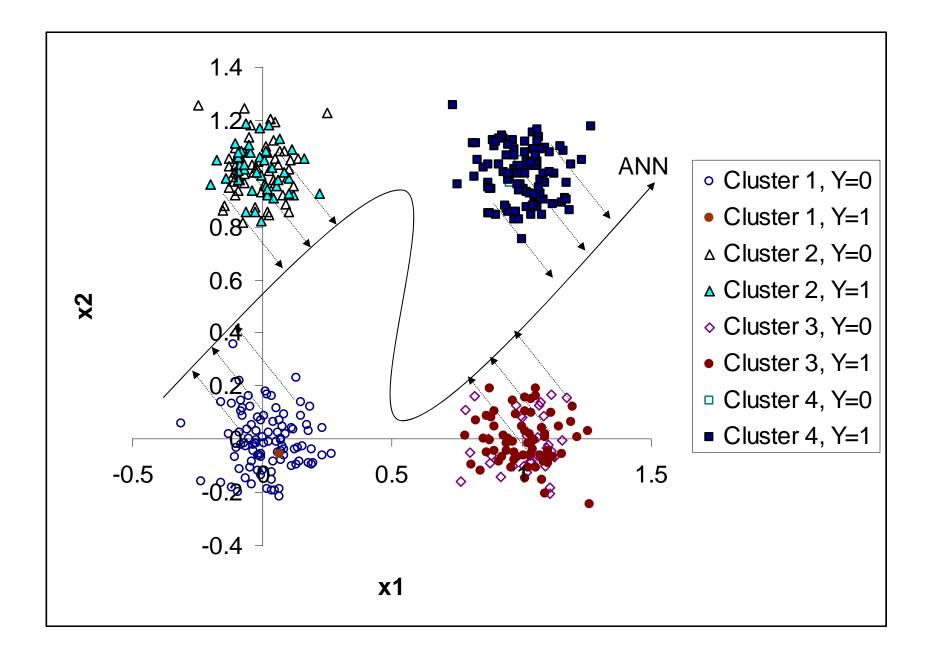

^aFull sample.

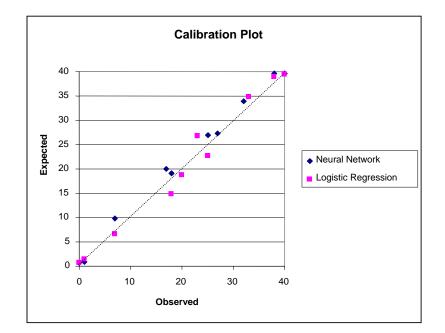
^bValidation sample.

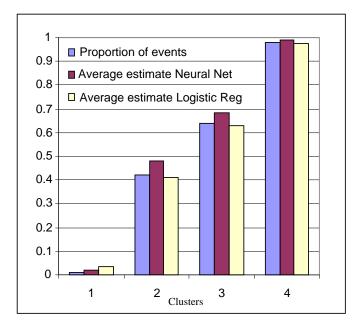
Bold entries indicate adequate calibration.


Standardized mortality ratio in different study comparisons

Simulated data set

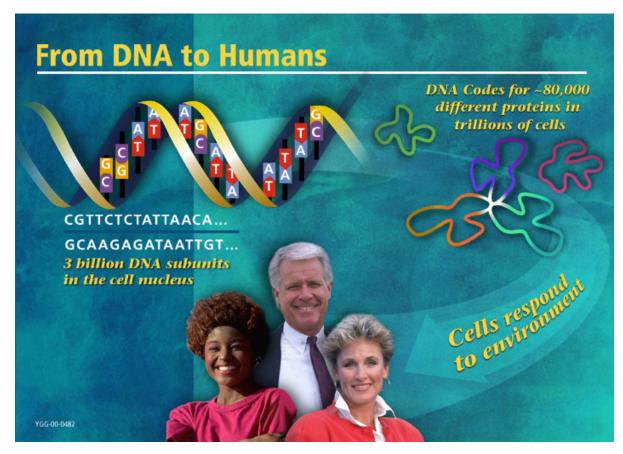

Clusters 1 to 4 centered on (0,0), (0,1), (1,0), and (1,1), with Gaussian noise True probability for clusters 1 to 4: 0.01, 0.40, 0.60, and 0.99


3



Simulated data set

Clusters 1 to 4 centered on (0,0), (0,1), (1,0), and (1,1), with Gaussian noise True probability for clusters 1 to 4: 0.01, 0.40, 0.60, and 0.99



	LR	Neural Network
Sum of squared errors	52.363	50.894
Mean squared error	0.130	0.127
Cross-entropy error	154.543	150.838
Mean cross-entropy error	0.386	0.377
Sum of residuals	103.226	100.412
Mean residual	0.2580	0.251
AUC	0.889	0.895
HL-C	6.437	11.773
р	0.598	0.161

	LR	Neural Network
Cluster 2 min (GS: 0.4)	.20	.43
Cluster 2 max	.80	.58
Cluster 3 min (GS: 0.6)	.29	.65
Cluster 3 max	.85	.73

Will we ever achieve "individualized" risk assessment? If so, how can we evaluate it?

Acknowledgments

- NIH, Komen Foundation
- Fred Resnic, Michael Matheny