THE INSTITUTE OF OPTICS

BS/MS/PhD degrees

OPTICAL ANTENNAS FOR ENHANCED LIGHT-MATTER INTERACTIONS

OPTICAL ANTENNAS FOR ENHANCED LIGHT-MATTER INTERACTIONS

ANTENNA-BASED INTERACTIONS

Adv. Opt. Photon. **1**, 438 (2009) *Nature* **455**, 887 (2008)

ETYMOLOGY

'up'

Indo-European: 'to stretch'

e.g. tension, pretend, tenacious, .. tan (Sanskrit) tendere (Latin) teinei (Greek) dehnen (German) tyanut (Russian) taanna (Hindi)

ANTENNA = THE 'THING' STRETCHING UP

ANTENNA

A DEVICE TO CATCH THE WIND (GREEK,LATIN)

OPTICAL ANTENNAS IN NATURE

PHOTOSYNTHESIS: COLLECTIVE RESPONSE OF CHLOROPHYLL MOLECULES

ANTENNA

A DEVICE TO CATCH ELECTROMAGNETIC WAVES

OPTICAL ANTENNA

A DEVICE TO CONVERT OPTICAL RADIATION TO LOCALIZED ENERGY, AND *VICE VERSA*.

Adv. Opt. Photon. 1, 438 (2009)

PROBLEM STATEMENT

-> coupled system of 3 entities

radiation

E. H. Synge the ctree. Sundrum 22.4.28. 6 Dublin Ireland.

Dear Professore Sinstein

You will, I thank, he interested thear that, after many belongs, the Collected edition of transitions works has at length here Definitely undertaken by the Royal Inde Academy. My hother and another are at furent here and

Rep. Prog. Opt. 50, 137 (2007).

A. EINSTEIN (1928)

→ SYNGE DEVELOPS REVISED CONCEPT (APERTURE) !

es wagen moechte, einem Experimentalphysiker zu empfehlen, seine Zeit darauf zu verwenden. Am richtigsten duerfte es sein, die 4dee als solche in einer wissenschaftlichen Zeitschrift zu publizieren und dabei auf die praktischen Schwierigkeiten der Ausfuchrung hinzuweisen.

→ SYNGE's PUBLICATION !

E.H. Synge, Phil.Mag. 6, 356 (1928)

2001 FUJI-XEROX PATENT

BOTTOM-UP SYNTHESIS OF OPTICAL ANTENNAS

RAMAN SCATTERING

NEAR-FIELD RAMAN SCATTERING

SERPENTINE NANOTUBES

(E. Joselevich)

QuickTime™ and a Cinepak decompressor are needed to see this picture.

NEAR-FIELD RAMAN IMAGING OF SERPENTINE NANOTUBES

LOCALIZATION OF DEFECTS

 $(n,m) = (8,5) : d_t \sim 0.9nm$

ENHANCING LIGHT EMISSION

ANTENNA-COUPLED PHOTOEMISSION

ENHANCEMENT AND QUENCHING OF SINGLE MOLECULE FLUORESCENCE

PRL 96, 113002 (2006)

ANTENNA-ENHANCED FLUORESCENCE

without Au particle :

without Au particle:

ANTENNA-ENHANCED FLUORESCENCE

without Au particle :

65nm 1µm

with Au particle antenna:

PRL 96, 113002 (2006)

IMAGING OF SINGLE Ca⁺ ION CHANNEL PROTEINS IN ERYTHROCYTE MEMBRANES

IMAGING OF SINGLE Ca⁺ ION CHANNEL PROTEINS IN ERYTHROCYTE MEMBRANES

Nano Lett. 8, 642 (2008)

QUANTUM YIELD

↓ ↓ z

SCALING OF ANTENNA PARAMETERS

HALF WAVE ANTENNAS

QuickTime[™] and a TIFF (Uncompressed) decompressor are needed to see this picture.

OPTICAL HALF-WAVE ANTENNA

EFFECTIVE WAVELENGTH SCALING

OPTICAL YAGI-UDA ANTENNA

T. Taminiau et al., *Opt. Exp.* **16**, 10858 (2008)

$$K_{exc}(\varphi,\theta) = \frac{D(\varphi,\theta)}{D_0} K_{rad}$$

PROBLEM STATEMENT

-> coupled system of 3 entities

radiation

NEAR-FIELD TRANSITIONS

Farfield : $k = 2\pi/\lambda \sim 10^5 \text{ cm}^{-1}$ Near-field : $k_{nf} \sim \pi/d \sim 10^7 \text{ cm}^{-1}$

Direct intraband transitions are possible in the NEAR-FIELD !!

$$\left\langle \mathbf{f} \mid \hat{\mathbf{p}} \cdot \hat{\mathbf{A}} \mid \mathbf{i} \right\rangle \longrightarrow \hat{\mathbf{A}} \neq const.$$

Standard selection rules do not apply in the NEAR-FIELD !!

CONCLUSIONS

Antenna-coupled light-matter interactions

- Spectroscopy with spatial resolution ~10 nm

- Opportunities for LEDs, photovoltaics
- Nonlinear plasmonics

Thanks: Ado Jorio, Ernesto Joselevich, Stephen Stranick, Bradley Deutsch, Shanlin Pan, Barbara Schirmer, Rainer Hillenbrand, Brian McIntyre,

www.nano-optics.org