Superior Surface Integrity by Knowledge-based Manufacturing – Recent Advances 2017 GAFOE Symposium, Evendale, Ohio, 31.03.17-02.04.17

Stiftung Institut für Werkstofftechnik Bremen

Outline

Recent frontiers of machining

The Loch Ness Monster "Nessie"

- Below the surface
- Not well described
- Famous (thus kind of important)

A Chameleon

- Changes color
- Complex mechanism
- Interacts with its environment using "code"

Pictures: thegreenhead.com, nationalgeographic.com

Stiftung Institut für Werkstofftechnik Bremen

Outline

Recent frontiers of machining

The Loch Ness Monster "Nessie"

- Below the surface
- Not well described
- Famous (thus kind of important)

A Chameleon

- Changes color
- Complex mechanism
- · Interacts with its environment using "code"

Highly relevant to interdisciplinary challenges in manufacturing

Pictures: thegreenhead.com, nationalgeographic.com

Stiftung Institut für Werkstofftechnik Bremen

Manufacturing Technologies What exactly are we doing?

Processes

Pictures: IWT Bremen

Manufacturing Technologies What exactly are we doing?

Processes

Components

Pictures: IWT Bremen, FAG, xylon.de

IWT

Manufacturing Technologies What exactly are we doing?

Pictures: IWT Bremen, FAG, xylon.de, Daimler, Airbus, GE, Apple

Manufacturing Technologies and their accuracy around 1900

Pictures: huettenmuseum-thale.de

Manufacturing Technologies

their accuracy and tasks today

Geometrical accuracy

- Conventional machining (turning, milling, grinding, ...)
 - accuracy of ca. 1 µm
 - Ø of a human hair ≈ 70 µm
- Ultraprecision machining (diamond machining, polishing, …)
 - accuracy on a nm scale
 - mirrors for telescopes: shape deviation of < 8 µm over 1 m

Pictures: GE, ALMA

Manufacturing Technologies

their accuracy and tasks today

Geometrical accuracy

Conventional machining (turning, milling, grinding, ...)

- accuracy of ca. 1 µm
- Ø of a human hair ≈ 70 µm
- Ultraprecision machining (diamond machining, polishing, …)
 - accuracy on a nm scale
 - mirrors for telescopes: shape deviation of < 8 µm over 1 m

Consideration of the surface integrity

- Surface roughness
- Hardness
- Residual stresses
- Cracks and microcracks

Manufacturing Technologies

their accuracy and tasks today

Geometrical accuracy

Conventional machining (turning, milling, grinding, ...)

- accuracy of ca. 1 µm
- Ø of a human hair ≈ 70 µm
- Ultraprecision machining (diamond machining, polishing, …)
 - accuracy on a nm scale
 - mirrors for telescopes: shape deviation of < 8 µm over 1 m

Consideration of the surface integrity

- Surface roughness
- Hardness
- Residual stresses
- Cracks and microcracks

Pictures: GE, ALMA, IWT Bremen, thegreenhead.com

Surface Integrity

The Loch Ness Monster "Nessie"

- Below the surface
- Not well understood
- Famous (thus kind of important)

Subsurface Properties and Surface Integrity

- Below the surface
- Not well understood
- · Highly relevant to industry and science

Pictures: thegreenhead.com, IWT Bremen

IWT

Surface Integrity

Relevance

Pictures: ETH Zürich, Wikipedia

Surface Integrity still a frontier of engineering

sets

Different processes - identical results

thermal/thermomechanical

mechanical

Different processes lead to identical surface properties

The new approach of "Process Signatures"

for the prediction of the effects of manufacturing processes

Stiftung Institut für Werkstofftechnik Bremen ECO ¥ Centrum

The new approach of "Process Signatures"

for the prediction of the effects of manufacturing processes

spatial gradients (μ m) over time (μ s)

The new approach of "Process Signatures" for the prediction of the effects of manufacturing processes

phase transformation

residual stresses

hardness

roughness

grain size

Which are the decisive properties?

Stiftung Institut für Werkstofftechnik Bremen

The new approach of "Process Signatures" for the prediction of the effects of manufacturing processes

Outline

Recent frontiers of machining

The Loch Ness Monster "Nessie"

- Below the surface
- Not well described
- Famous (thus kind of important)

A Chameleon

- Changes color
- Complex mechanism
- Interacts with its environment using "code"

Pictures: thegreenhead.com, nationalgeographic.com

Stiftung Institut für Werkstofftechnik Bremen

Outline Recent frontiers of machining

A Chameleon

- Changes color
- Complex mechanism
- Interacts with its environment using "code"

Pictures: nationalgeographic.com

IWT

Outline

Recent frontiers of machining

Surface Chemistry

- Changes with temperature
- Complex mechanism
- Interacts with its environment in machining

A Chameleon

- Changes color
- Complex mechanism
- Interacts with its environment using "code"

Pictures: nationalgeographic.com

IWT

Thermal load in manufacturing proceses

Require application of metalworking fluids

Pictures: IWT Bremen

IWT

Metalworking Fluids in manufacturing processes Tasks and supply

Pictures: IWT Bremen, metalfluids.com, mwfmag.com

IWT

Metalworking Fluids in manufacturing processes Composition

Stiftung Institut für Werkstofftechnik **ECO**^{*}Centrum

Metalworking Fluids in manufacturing processes Target site: Contact zone between tool and workpiece

[[]Davies et al., 2005]

Metalworking Fluids in manufacturing processes Target site: Contact zone between tool and workpiece

Metalworking Fluids in manufacturing processes Efficiency and relevance

Metalworking Fluids in manufacturing processes Efficiency and relevance

Metalworking Fluids in manufacturing processes Efficiency and relevance

Metalworking Fluids in manufacturing processes

Efficiency and relevance

Metalworking Fluids in manufacturing processes

Efficiency and relevance

für Werkstofftechnik

Frontiers of Engineering a multi-disciplinary challenge!

Surface Integrity

- Identification of working mechanisms
- Multifactorial effects during the process
- Interdisciplinary challenge
 - Manufacturing Technologies
 - Materials Science
 - Computer Science
 - Physics
- First steps taken based on new understanding

Surface Chemistry

- Confirmation of working mechanisms
- Multifactorial effects during process
- Interdisciplinary challenge
 - Manufacturing Technologies
 - Materials Science
 - Chemistry
 - Microbiology
- First steps taken based on new understanding

We are on our way to paradigm-shift by knowledge-based manufacturing

Pictures: thegreenhead.com, nationalgeographic.com

Thank you for your kind attention!

This work is funded by the European Research Council and the German Research Foundation. The financial support is gratefully acknowledged.

Contact:

Dr.-Ing. Dipl.-Biol. Daniel Meyer Stiftung Institut für Werkstofftechnik (IWT) Badgasteiner Str. 3 28359 Bremen, Germany Tel.: +49 (0) 421 218 51149 Fax: +49 (0) 421 218 51102 Email: dmeyer@iwt.uni-bremen.de

